
19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 1/100

pC/OS Reference

V1.95c

Haftungsausschluß
Der Autor übernimmt keinerlei Haftung für durch diesen Code entstandene oder entstehende
Schäden an Hard- und Software. Er versichert lediglich, daß er den Code vielfältigen Test's auf
unterschiedlicher Hardware unterzogen hat, um seinerseits keine Fehler bestehen zu wissen.
Sollten dennoch Fehler auftauchen oder Vorschläge zur Verbesserung des Codes an den Autor
weitergegeben werden, so ist dieser bestrebt, Fehler schnellstmöglich auszumerzen oder
Vorschläge einzuarbeiten.

liability exclusion
The author takes over no liability for through this code originated or emerging damages to
hardware and software. He assures merely that he subjected the code of diverse tests on
different hardware, about for his part no mistakes to know exists. Mistakes nevertheless should
appear or suggestions are passed on at the author to the improvement of the code, so this is
striving, mistakes fastest to wipe out or to incorporate suggestions.

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 2/100

To this for beginners at the fastest to understand real time operating system belongs µC/OS from Jean J. Labrosse (see
http://www.micrium.com).
In the versions 1.xx it can administer up to 63 applikationtasks with ever different priorities and belongs to the real time
operating systems with the lowest storage demand.
pC/OS was based on the original version µC/OS 1.00 from the Embedded Systems Programming Magazine(1992) developed
further.

Since is exchanged by direct transfer of pointers in the original version data between the tasks, and consequently no
guarantee for the free usability of the sending-buffers after transfer to another task exists and, much important, the recipient
a pointer in the data field of another tasks gets (pointer-error / longitudinal mistake / manipulations among others) I altered
the mechanisms for Message-Box and Queue accordingly in a way that the data about a kernel-internal Buffer now are handed
over to the recipient. This means that the kernel copies to transferring data into an individual buffer and this copies also again
itself with transfer to the recipient in the buffer prepared through the recipient. This admittedly entails a higher storage
demand for Queue, secures the processes for it most extensive, however (for real-mode) of each other from.
Kernel constants were transferred in the CODE-Area for security reasons furthermore.
Furthermore I have add pipes, eventgroups, timerservice and dynamic memory management.

In order to declare these alterations unequivocally, I have altered the name, ajar at the always bigger nascent original
"µC/OS", on pC/OS like "pico-C..".

Special to: Priority Inversion, the problem and the solutions (actual only in german - sorry !)

known bug:
If a task with lower priority waits for a recource, and a task with higher priority this recource places, so the asleep Task is put
into the ready-state. Since the task with higher priority further-runs, this cannot finish reading again the same recource since
the lower task 'prematurely' comes with implementation with the return-code OS_TIMEOUT back otherwise.

https://www.embedded-os.de/en/pcos_prioinv.shtml

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 3/100

Since the terms of the various IPC's with data transport are not unique and different implementations can be found in different
RTOS systems under the same terms, here is an overview of all the IPC's implemented in the pC/OS.

Semaphor "Semaphor"

 - binary/blocking serialize access to shared
objects(s)

 - counting counting of an event

Mutual-
Excusion "Mutex"

serialze access to shared
object(s) w/o the risk
of priority inversion but internaly
more complex

Event-Group "EventGroup"
a group of events, w/o counting
but with AND/OR options for
pending

Mailbox "MailBox"

a single pointer/value transfer
- one pointer/value is temp
stored
(a one pointer/value buffer)

Byte-Queue "Queue"

byte-by-byte transfer (FIFO /
LIFO)
- the bytes are temp stored in
the queue
(a serial transfer-buffer for bytes)

Package-
Queue "Pipe"

package-by-package transfer
(FIFO / LIFO)
- the hole packages are temp
stored in the pipe
(a serial transfer-buffer for
packages / C-structs)

Smart-
Pointer-
Queue

"SmartMessageQueue"

pointer-by-pointer transfer (FIFO
/ LIFO)
- the pointers are temp stored
and the memory-heap ownership
behind that pointers is transfered
too
(a serial transfer-buffer for
pointers inspired by C++ smart-
pointers)

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 4/100

Please note that some functions are declared under the same name as the original but with modified parameters or pointers.

User-Functions:

Task-Control: Description

OS_Init Initialization of the kernel

OS_Start Begin the kernel services

OS_TaskCreate Generating of a task

OS_ChangePrio Alteration of the priority of the active task

OS_TaskChangePrio Alteration of the priority of a active/ready task

OS_TaskDelete Deletion of a active/ready task

OS_TaskIdDelete Deletion of a active/ready task by unique ID

OS_TaskGetStatus returns the current status of the task

OS_TaskIdGetStatus returns the current status of a task by unique ID

OS_TaskGetID returns the unique ID of a task

OS_TaskGetPrio returns the priority of a task

OS_TaskIdDestroy Deletion of a task by unique ID, even if he waits for an IPC or a
mutex has occupied & release all memory allocations

OS_TaskSuspend Suspending of a task

OS_TaskIdSuspend Suspending of a task by unique ID

OS_TaskResume Reactivation of a suspended task

OS_TaskIdResume Reactivation of a suspended task by unique ID

OS_TimeDly Put current task for certain time sleeps

OS_TimeDlyResume Reactivation of an asleep task before course of the put in time

OS_TimeDlyIdResume Reactivation of an asleep task by unique ID before course of the
put in time

OS_Lock It suppresses the Sheduler (no taskswitch)

OS_Unlock Reactivation of the Sheduler (taskswitch at event or time)

OS_GetRev Returns pointer on kernel revision

Dynamic-Memory: Description

OS_MemoryInit Generates of the memory pool

OS_MemAlloc Allocation of memory

OS_MemFree Release of allocated memory

OS_MemFreeSize It returns the amount of free memory

OS_MemVerifyPtr Check if the pointer points inside the memory pool

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 5/100

SmartMessageQueue: Description

OS_SMQueueInit Initialsation of a SmartMessageQueue

OS_SMQueueInfo Information about a SmartMessageQueue catches up with

OS_SMQueueClear Delete all messages in a SmartMessageQueue

OS_SMQueuePost Send a message into a SmartMessageQueue

OS_SMQueueFrontPost Send a message to the beginning of a SmartMessageQueue

OS_SMQueuePostAbbort Abborts waiting of a sending task (highest waiting prio) onto a
SmartMessageQueue

OS_SMQueuePend Wait for a message from a SmartMessageQueue

OS_SMQueuePendAbbort Abborts waiting of a receiving task (highest waiting prio) onto a
SmartMessageQueue

Mailboxes: Description

OS_MboxInit Initialisation of a Mailbox

OS_MboxPost Send data to task with higher priority recipients of this Mailbox

OS_MboxPostAbbort Abborts waiting of a sending task (highest waiting prio) onto a
mailbox

OS_MboxPend Wait for data from a Mailbox

OS_MboxPendAbbort Abborts waiting of a receiving Tasks (highest waiting prio) on a
Mailbox

Queues: Description

OS_QueueInit Initialsation of a Queue

OS_QueueInfo Information about a Queue catches up with

OS_QueuePost Send data into a Queue

OS_QueueFrontPost Send data to the beginning of a Queue

OS_QueuePostAbbort Abborts waiting of a sending task (highest waiting prio) onto a
queue

OS_QueuePend Wait for data from a Queue

OS_QueuePendAbbort Abborts waiting of a receiving Tasks (highest waiting prio) on a
Queue

OS_QueueClear Delete all data in a Queue

Pipes: Description

OS_PipeInit Initialisation of a Pipe

OS_PipeInfo Information about a Pipe catches up with

OS_PipePost Send data into a Pipe

OS_PipeFrontPost Send data to the beginning of a Pipe

OS_PipePostAbbort Abborts waiting of a sending task (highest waiting prio) onto a
pipe

OS_PipePend Wait for data from a Pipe

OS_PipePendAbbort Abborts waiting of a receiving Tasks (highest waiting prio) on a
Pipe

OS_PipeClear Delete all data in a Pipe

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 6/100

inter-core AMP-Pipes: Description

OS_IccInit Initialisation of the AMP-Pipe pair

OS_IccInfo Information about the AMP-Pipe pair catches up with

OS_IccPost Send data to the other core

OS_IccPend wait for data from the other core

OS_IccClear Delete all data of the AMP-Pipe towards the other core

Semaphores: Description

OS_SemInit Initalisation of a Semaphore

OS_SemAccept wait for event and returns number

OS_SemPost Decontrol of a busy Semaphores / places event

OS_SemPend Cover one Semaphore / waits on event

OS_SemPendAbbort Abborts waiting of a Tasks (highest waiting prio) on a Semaphore

OS_SemClear Clear the Semaphore-Counter

Mutexes: Description

OS_MutexCreate Generating of a Mutex

OS_MutexPost Decontrol of a Mutex

OS_MutexPend Cover the Mutex

OS_MutexPendAbbort Abborts waiting of a Tasks (highest waiting prio) on a Mutex

Event-Groups: Description

OS_EvgInit Initialisation of a Eventgroup

OS_EvgPost Place one/many events of an Evengroup

OS_EvgPend Wait for arriving an or several events of an Eventgroup

OS_EvgPendAbbort Abborts waiting of a task (highest waiting prio) onto a Eventgroup

Timer-Service: Description

OS_TimerCreate Generating of a Timer

OS_TimerDelete Delete of a generated Timer

OS_TimerStart (Re-)Start of a generated Timer

OS_TimerStop Stop of a generated Timer

OS_TimerGetState returns the status of a generated Timer

OS_TimerGetRemain returns the remaining time of a running Timer

System-Ticks: Description

OS_TimeSet Set ticker to value

OS_TimeGet returns current ticker-value

Interrupts: Description

OS_IntEnter Registration of a called ISR

OS_IntExit End of a called ISR

History: Description

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 7/100

OS_HistoryPost Write entry in History

OS_HistoryRead return first History-entry and delete this in the table

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 8/100

Error-Codes:

Name Decimal_Value Description

OS_SUCCESS / OS_NO_ERR 0 no errors

OS_PARAM_ERR 1 parameter wrong / error

OS_TIMEOUT 10 timeout condition occurs during waiting for a resource

OS_PRIO_EXIST 11 under this priority, a other Task or Mutex is registered

OS_TASK_NOT_EXIST 12 under this priority, no Task is registered

OS_TASK_SUSP_PRIO 13 under this suspend priority, no Task is registered

OS_TASK_NOT_SUSP 14 the task is not suspended

OS_TASK_NOT_RDY 15 the task is not ready

OS_SUSPEND_IDLE 16 the Idle-Task cannot be suspended

OS_PRIO_INVALID 17 the value of priority is bigger OS_MIN_PRIO

OS_TIME_NOT_DLY 18 the task doesn't sleep

OS_SEM_ERR 30 internal error in Semaphore-handling

OS_SEM_NODATA 31 Semaphore occupied / no event (with OS_NO_SUSP)

OS_SEM_OVF 32 Error in the Semaphore-handling (Counter too big)

OS_MUX_ERR 40 Error in Mutex-handling

OS_MUX_NOACC 41 Mutex occupied (with OS_NO_SUSP)

OS_MUX_USED 42 to change Task have a Mutex occupied

OS_MBOX_FULL 50 Mailbox fully (with OS_NO_SUSP)

OS_MBOX_NODATA 51 no message in Mailbox (with OS_NO_SUSP)

OS_Q_FULL 60 Queue fully (with OS_NO_SUSP)

OS_Q_NODATA 61 no byte in Queue (with OS_NO_SUSP)

OS_Q_CLEAR 62 Queue was cleared during waiting

OS_SMQ_ERR 70 Error in SmartMessageQueue handling

OS_SMQ_FULL 71 SmartMessageQueue fully (with OS_NO_SUSP)

OS_SMQ_NODATA 72 no package in SmartMessageQueue (with OS_NO_SUSP)

OS_SMQ_CLEAR 73 SmartMessageQueue was cleared during waiting

OS_P_FULL 80 Pipe fully (with OS_NO_SUSP)

OS_P_NODATA 81 no package in Pipe (with OS_NO_SUSP)

OS_P_CLEAR 82 Pipe was cleared during waiting

OS_P_LEN_ERR 83 Package too long

OS_EVG_ERR 90 Error in Event-Group handling

OS_EVG_NOE 91 Event(s) appeared not (with OS_NO_SUSP)

OS_TMR_NO_TIME 110 no time given on TimerCreate

OS_TMR_NOT_EXIST 111 timer was not created / registered

OS_TMR_EXIST 112 timer still created / registered

OS_MEM_ERR 120 parameter error / internal error

OS_MEM_OVF 121 memeory overflow

OS_HIS_END 130 no (more) entry existing

OS_ICC_ERR 140 parameter error / internal error

OS_ICC_NODATA 141 no package in AMP-Pipe (with OS_NO_SUSP)

OS_ICC_LEN_ERR 142 Package/Message too long

OS_ICC_FULL 143 AMP-Pipe fully (with OS_NO_SUSP)

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 9/100

Configuration of the kernel

The pC/OS kernel can be configured in addition to the to-use hardware port some numbers of ways to configure Services/IPCs
as well as to reduce the memory requirements - code-size for the compilers "unused code" may not clearly identify and RAM -
available. These are in the file "OS_cfg.h" together.

components configuration description

OS_SYSTEM_TICKS_PER_SEC system ticks per secound

OS_TIMER_TICKS_PER_SEC timer ticks per secound (see Timer-Service / TIMERS), can be tick faster than
the kernel(system)-ticks

OS_TASK_EXT_EN include code for extended TASKS services

OS_TASK_DESTROY_EN include code for destroy pending/waiting TASKS, needs OS_TASK_EXT_EN too

OS_SEM_EN include code for SEMAPHORES

OS_SEM_EXT_EN include code for extended SEMAPHORES services

OS_MUX_EN include code for MUTEXES

OS_SMQ_EN include code for SMART-MESSAGE-QUEUE

OS_MBOX_EN include code for MAILBOXES

OS_Q_EN include code for QUEUES

OS_P_EN include code for PIPES

OS_EVG_EN include code for EVENTGROUPS

OS_TMR_EN include code for TIMERS

OS_MEM_EN include code for MEMORY-MANAGER

OS_HIS_EN include code for HISTORY

OS_ICC_EN include code for inter-core AMP-PIPES

OS_STK_CHECK_EN check end-of-stack of old task during context switch

OS_STK_CHECK_FILL fill stack with 0xEF pattern to get the deep of use

user
configuration description

OS_MAX_TASKS max created tasks in hole system --> max 64 !

OS_MIN_PRIO lowest possible prio --> max 64 !

OS_IDLE_STK_SIZE idle stack size in OS_STK_TYPE with fix (OS_MIN_PRIO - 1) as prio for idle task

OS_TMR_PRIO timer task prio, if OS_TMR_EN is not 0

OS_TMR_STK_SIZE timer stack size in OS_STK_TYPE, if OS_TMR_EN is not 0

OS_MAX_HISTORY history entries, if OS_HIS_EN is not 0

OS_STK_RESERVE space between real end-of-stack and check-point in OS_STK_TYPE, if OS_STK_CHECK_EN
is not 0

to OS_MAX_TASKS and OS_MIN_PRIO:
If a system is needed with 5 tasks, 2 of which tasks are using a shared mutex, you need OS_MAX_TASKS = 7 (including a
Mutex and Idle-Task) and OS_MIN_PRIO = 8 whereas the Idle-Task then gets the prio 7 and all other Tasks and the Mutex gets
higher priorities (0..6). If the timer-service should used too, it must be this timer task additionally involved.

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 10/100

Managed / Unmanaged Interrupt Service Routinen (ISR)

The pC/OS kernel must be notified when an ISR is running and needs to consider when leaving this if a process change is
"preemptive" required. There are, depending on the hardware and used implementation, two ways:

managed ISR the IRQ entry / exit is central and informs the kernel (see eg. ARM7TDMI ports)

unmanaged ISR each ISR is independent and is jumped out directly from the vector table -> the kernel
must be informed. (see eg. Cortex-Mx ports)

In managed-ISRs the central ISR entry / exit code informs the kernel, so that the ISR itself must not observed for the kernel.
In unmanged ISR however, at first OS_IntEnter() is to call and at end / at last OS_IntExit() is to call !

managed ISR unmanaged ISR

 PUBLIC OSirqISR
 CODE32
OSirqISR
 ; save registers
 ; register interrupt on kernel
 ; read Interrupt vector for ...
 ; ... this event (eg MyManaged_ISR)

 ; call handler (eg MyManaged_ISR) -->

 ; call OS_IntExit()
 ; restore registers
 END

void MyManaged_ISR(void)
{
 .
 . // my ISR code
 .
}

void MyUnManaged_ISR(void)
{
 OS_IntEnter();
 .
 . // my ISR code
 .
 OS_IntExit();
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 11/100

Task-Control

OS_Init

void OS_Init(void)

Initialize the Kernel and installs the Idle-Task. This function must be called before all other kernelservices at the system
initialization once.

Parameters

none

Return Value

none

Example

void main(void)
{
 .
 .
 OS_Init();
 .
 .
 OS_Start();
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 12/100

OS_Start

void OS_Start(void)

Starts the kernel. This function activates the sheduler and never returns back to caller.

Parameters

none

Return Value

none

Example

void main(void)
{
 .
 .
 OS_Init();
 .
 .
 OS_Start();
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 13/100

OS_TaskCreate

U08 OS_TaskCreate(void (OS_FAR *task)(void *dptr), void *data, void *pstk, U16 stksize, U08 prio)

Installs a new Task. This function initializes the Task-Control-Block and writes down the new Task with his Stack and the
call parameters. This can from main() take place out in term during the initialization as well as another Task.

Parameters

*dptr pointer to task-code

*data pointer to parameter of this task

*pstk pointer to stack of this task

stksize stack size in OS_STK_TYPE

prio priority of this task

Return Value

OS_NO_ERR Task successfully positioned

OS_PRIO_EXIST under this priority, already a Task exists

OS_PRIO_INVALID this priority is reserved for the Idle-Task or the value of priority is bigger
than OS_MIN_PRIO

Example

OS_STK_TYPE Task1Stack[STK_SIZE];
U08 Task1Data;

void OS_FAR Task1(void *data); // forward declaration
.
.

void main(void)
{
 U08 state;

 .
 .
 OS_Init();
 .
 state = OS_TaskCreate(Task1, (void *)&Task1Data, Task1Stack, STK_SIZE, 18);
 .
 OS_Start();
}

.

.

void OS_FAR Task1(void *data)
{
 .
 .
 while(1)
 {
 .
 .
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 14/100

OS_ChangePrio

U08 OS_ChangePrio(U08 newp)

Change the priority of the current Tasks. This function can be used in order to change the priority of the tasks on reason
of an event for example.

Parameters

newp new priority of this task

Return Value

OS_NO_ERR Priority successfully changed

OS_PRIO_EXIST under this priority, already a task exists

OS_PRIO_INVALID this priority is reserved for the Idle-Task or the value of priority is bigger
than OS_MIN_PRIO

OS_MUX_USED to change Task have a Mutex occupied

Example

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_ChangePrio(38);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 15/100

OS_TaskChangePrio

U08 OS_TaskChangePrio(U08 oldp, U08 newp)

Change the priority of a Tasks. This function can be used in order to change the priority of a running/ready tasks on
reason of an event for example.
The priority of Tasks, waiting on a resource (Semaphore/Queue/Pipe/..) can not changed, because this state is visible for
the kernel but not the exact resource itself.

Parameters

oldp actual/old priority of the task

newp new priority of this task

Return Value

OS_NO_ERR Priority successfully changed

OS_PRIO_EXIST under this priority, already a task exists

OS_PRIO_INVALID this priority is reserved for the Idle-Task or the value of priority is bigger
than OS_MIN_PRIO

OS_TASK_NOT_RDY the Task is not in RUNNING/READY-state and so the priority can not
changed

OS_MUX_USED to change Task have a Mutex occupied

Example

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_TaskChangePrio(38, 25);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 16/100

OS_TaskDelete

U08 OS_TaskDelete(U08 prio)

Delete the given task. This function can be used, about for example on reason of an event the task too ending/clearing.
This task is distant from the Task-Control-Table afterwards. Allocated resources of the tasks are not released
automatically on that occasion.
In order to later be able to execute this task again, it must be positioned again by means of OS_TaskCreate regularly.
Tasks, waiting on a resource (Semaphore/Queue/Pipe/..) can not be deleted, because this state is visible for the kernel
but not the exact resource itself.

Parameters

prio priority of the task to delete

Return Value

OS_NO_ERR Task deleted

OS_TASK_NOT_EXIST under this priority, no task exists

OS_TASK_NOT_RDY the Task is not in RUNNING/READY-state and so the task can not be
deleted

OS_MUX_USED to delete Task have a Mutex occupied

Example

void OS_FAR Task1(void *data)
{
 U08 state;
 .
 .
 while(1)
 {
 .
 state = OS_TaskDelete(OS_PRIO_SELF);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 17/100

OS_TaskIdDelete

U08 OS_TaskIdDelete(U08 id)

Delete the given task by unique ID. This function can be used, about for example on reason of an event the task too
ending/clearing. This task is distant from the Task-Control-Table afterwards. Allocated resources of the tasks are not
released automatically on that occasion.
In order to later be able to execute this task again, it must be positioned again by means of OS_TaskCreate regularly.
Tasks, waiting on a resource (Semaphore/Queue/Pipe/..) can not be deleted, because this state is visible for the kernel
but not the exact resource itself.

Parameters

id unique ID of the task to delete

Return Value

OS_NO_ERR Task deleted

OS_TASK_NOT_EXIST >under this ID, no task exists

OS_TASK_NOT_RDY the Task is not in RUNNING/READY-state and so the task can not be
deleted

OS_MUX_USED to delete Task have a Mutex occupied

Example

void OS_FAR Task1(void *data)
{
 U08 state;
 .
 .
 while(1)
 {
 .
 state = OS_TaskIdDelete(3);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 18/100

OS_TaskGetStatus

U08 OS_TaskGetStatus(U08 prio)

Returns the current status of the given task.

Parameters

prio priority of the task

Return Value

status see "TASK STATUS", Bitmask

Example

void OS_FAR Task1(void *data)
{
 U08 status;
 .
 .
 while(1)
 {
 .
 status = OS_TaskGetStatus(6);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 19/100

OS_TaskIdGetStatus

U08 OS_TaskIdGetStatus(U08 id)

Returns the current status of the given task by unique ID.

Parameters

id unique ID of the task

Return Value

status see "TASK STATUS", Bitmask

Example

void OS_FAR Task1(void *data)
{
 U08 status;
 .
 .
 while(1)
 {
 .
 status = OS_TaskIdGetStatus(2);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 20/100

OS_TaskGetID

U08 OS_TaskGetID(U08 prio)

Returns the unique-ID to the specified tasks. These can later be used to e.g. a task - even if his priority have changed or
has just a mutex in use - a violent end (OS_TaskDestroy()).

Parameters

prio current priority of the task

Return Value

id the unique-ID of this task

Example

U08 idT1;

void OS_FAR Task1(void *data)
{
 .
 idT1 = OS_TaskGetID(OS_PRIO_SELF);
 .
 while(1)
 {
 .
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 21/100

OS_TaskGetPrio

U08 OS_TaskGetPrio(U08 id)

Returns the priority to the specified tasks by unique ID.

Parameters

id unique ID of the task

Return Value

prio the priority of this task

Example

U08 prioT1;

void OS_FAR Task1(void *data)
{
 .
 prioT1 = OS_TaskGetPrio(2);
 .
 while(1)
 {
 .
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 22/100

OS_TaskIdDestroy

U08 OS_TaskIdDestroy(U08 id)

Removes the specified task completely independently of his status. This feature can be used to e.g. on basis of an event
the task is to cancel. This task is then from the Task-Control-Table, from possibly registered IPCs
(Semaphore/MBox/Queue/Pipe/..) and the Memory Manager completely removed.
If the tasks at this stage, a mutex has occupied, it will be released and a user-callback function is called to make any
necessary reinitialization of the affected hardware, etc. (see OSMutexReInitResource () in "pC_OS_userCB.c"). But this
can be done only for one mutex (the last). If the task have two mutexes occupied, it is only the last released!
In order to later be able to execute this task again, it must be positioned again by means of OS_TaskCreate regularly.
ATTENTION:
During this task will be removed from the Task-Control-Table and from the IPCs all interrupts are blocked because a
suitable event for this task could result in a access/update conflict. During the subsequent clean up the memory-manager
the interrupts are allowed again but sheduling is suppressed to prevent a simultaneous re-booting this task using
OS_TaskCreate() (priority of this task).

Parameters

id unique-ID of the task to destroy

Return Value

OS_NO_ERR task completely removed

OS_TASK_NOT_EXIST the specified task does not exist

OS_TASK_NOT_RDY the task could not be completely removed from the IPCs or a mutex

OS_MEM_ERR during deallocating the memory allocations of this task an error occurs

Example

void OS_FAR Task1(void *data)
{
 U08 state;
 .
 .
 while(1)
 {
 .
 state = OS_TaskIdDestroy(2);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 23/100

OS_TaskSuspend

U08 OS_TaskSuspend(U08 prio)

Suspends a task from the implementation through the kernel. This function can be used in order to deactivate a task for
a time on reason of an event for example.

Parameters

prio priority of task to suspending

Return Value

OS_NO_ERR Task successfully suspended

OS_SUSPEND_IDLE the Idle-Task cannot be suspended

OS_PRIO_INVALID the value of priority is bigger than OS_MIN_PRIO

OS_TASK_SUSP_PRIO under this priority, no Task is registered

OS_MUX_USED to suspend Task have a Mutex occupied

Example

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_TaskSuspend(24);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 24/100

OS_TaskIdSuspend

U08 OS_TaskIdSuspend(U08 id)

suspends a task given by unique ID from the implementation through the kernel. This function can be used in order to
deactivate a task for a time on reason of an event for example.

Parameters

id unique ID of task to suspending

Return Value

OS_NO_ERR Task successfully suspended

OS_SUSPEND_IDLE the Idle-Task cannot be suspended

OS_TASK_SUSP_PRIO under this ID, no Task is registered

OS_MUX_USED to suspend Task have a Mutex occupied

Example

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_TaskIdSuspend(4);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 25/100

OS_TaskResume

U08 OS_TaskResume(U08 prio)

Reactivate a suspended Task. This function can be used in order to activate a suspended task again on reason of an event
for example.

Parameters

prio priority of suspended task

Return Value

OS_NO_ERR Task successfully reactivated

OS_TASK_NOT_SUSP the Task is not suspended

OS_PRIO_INVALID the value of priority is bigger than OS_MIN_PRIO

OS_TASK_NOT_EXIST under this priority, no Task is registered

OS_MUX_USED to resume Task have a Mutex occupied

Example

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_TaskResume(24);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 26/100

OS_TaskIdResume

U08 OS_TaskIdResume(U08 id)

Reactivate a suspended Task by given unique ID. This function can be used in order to activate a suspended task again on
reason of an event for example.

Parameters

id unique ID of suspended task

Return Value

OS_NO_ERR Task successfully reactivated

OS_TASK_NOT_SUSP the Task is not suspended

OS_TASK_NOT_EXIST under this ID, no Task is registered

OS_MUX_USED to resume Task have a Mutex occupied

Example

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_TaskIdResume(4);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 27/100

OS_TimeDly

void OS_TimeDly(U16 ticks)

If puts the current task for kernel-ticks sleeps. This function can be used in order to let pass a defined time on reason of
an event for example. ATTENTION! With the parameter OS_SUSPEND (0), the Task for always is deactivated and can
never be activated again.

Parameters

ticks kernel-ticks as sleeping-time (1...65535)

Return Value

none

Example

void OS_FAR Task1(void *data)
{
 .
 .
 while(1)
 {
 .
 OS_TimeDly(200);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 28/100

OS_TimeDlyResume

U08 OS_TimeDlyResume(U08 prio)

Breaks off the wait of a tasks prematurely. This function can be used in order to prematurely activate an asleep task
again on reason of an event for example.

Parameters

prio priority of sleeping task

Return Value

OS_NO_ERR Task successfully wakened

OS_TIME_NOT_DLY the Task doesn't sleep

OS_PRIO_INVALID the value of priority is bigger than OS_MIN_PRIO

OS_TASK_NOT_EXIST under this priority, no Task is registered

Example

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_TimeDlyResume(24);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 29/100

OS_TimeDlyIdResume

U08 OS_TimeDlyIdResume(U08 id)

Breaks off the wait of a tasks prematurely by unique ID. This function can be used in order to prematurely activate an
asleep task again on reason of an event for example.

Parameters

id unique ID of sleeping task

Return Value

OS_NO_ERR Task successfully wakened

OS_TIME_NOT_DLY the Task doesn't sleep

OS_TASK_NOT_EXIST under this ID, no Task is registered

Example

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_TimeDlyIdResume(4);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 30/100

OS_Lock

void OS_Lock(void)

If turns off the sheduler. This function can be used, about for example atomic (not under-breakable) to be able to execute
processes, without task-switches. Interrupts still are served.

Parameters

none

Return Value

none

Example

void OS_FAR Task1(void *data)
{
 .
 .
 while(1)
 {
 .
 OS_Lock();
 .
 . // not under-breakable part
 .
 OS_Unlock();
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 31/100

OS_Unlock

void OS_Unlock(void)

If switches on the sheduler again. This function is used, about for example atomic (not under-breakable) to complete
processes and to make a taskswitch again possible.

Parameters

none

Return Value

none

Example

void OS_FAR Task1(void *data)
{
 .
 .
 while(1)
 {
 .
 OS_Lock();
 .
 . // not under-breakable part
 .
 OS_Unlock();
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 32/100

OS_GetRev

U08 OS_FAR *OS_GetRev(void)

Returns a pointer on the kernelrevision (NULL-terminated ASCII-array).

Parameters

none

Return Value

*pointer pointer to the address of array

Example

void OS_FAR Task1(void *data)
{
 U08 OS_FAR *Revision;

 .
 .
 while(1)
 {
 .
 Revision = OS_GetRev();
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 33/100

Dynamic-Memory

OS_MemoryInit

U08 OS_MemoryInit(OS_MEM OS_HUGE *mp, U32 size)

Initialize the dynamic memory management. This function must be called for the dynamic memory management at the
system initialization once. The functions of the vigorous memory management can be used also without current kernel.
ATTENTION! It is executed no checkup of the storage area.

Parameters

*mp startaddress of memory-pool

size size of memory-pool in bytes

Return Value

OS_NO_ERR Memory pool positioned

OS_MEM_ERR one of the parameters is ZERO

Example for LARGE memory in NEAR-model

void main(void)
{
 U08 state;

 .
 . // Memory: 512k - 64k(near)
 state = OS_MemoryInit((OS_MEM OS_HUGE *)(0x10000000), 458750);
 .
 .
}

Example for model-known memory

U08 memorypool[MEMSIZE];

void main(void)
{
 U08 state;

 .
 state = OS_MemoryInit((OS_MEM OS_HUGE *)(memorypool), MEMSIZE);
 .
 .
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 34/100

OS_MemAlloc

U08 OS_MemAlloc(U08 OS_HUGE **MemPtr, U32 size)

Allocation of a required memory area.

Parameters

*MemPtr pointer of pointer to get address of memory-area

size size of needed memory in bytes

Return Value

OS_NO_ERR memory successfully allocated

OS_MEM_ERR size is ZERO or bigger as storage area of the processor

OS_MEM_OVF not sufficiently free memory

Example

void OS_FAR Task1(void *data)
{
 U08 OS_HUGE *Addr_p;
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_MemAlloc(&Addr_p, 3800);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 35/100

OS_MemFree

U08 OS_MemFree(U08 OS_HUGE **MemPtr)

Release of an allocated memory area and clearing of the pointer.

Parameters

**MemPtr pointer of pointer to address of allocated memory

Return Value

OS_NO_ERR memory successfully released

OS_MEM_ERR Pointer is ZERO or not a valid allocation found

Example

void OS_FAR Task1(void *data)
{
 U08 OS_HUGE *Addr_p;
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_MemAlloc(&Addr_p, 3800);
 .
 .
 state = OS_MemFree(&Addr_p);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 36/100

OS_MemFreeSize

U32 OS_MemFreeSize(void)

It returns the amount of free memory.

Parameters

none

Return Value

size free size in memory-pool in bytes

Example

void OS_FAR Task1(void *data)
{
 U08 OS_HUGE *Addr_p;
 U32 fsize;
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_MemAlloc(&Addr_p, 3800);
 .
 .
 fsize = OS_MemFreeSize();
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 37/100

OS_MemVerifyPtr

U08 OS_MemVerifyPtr(void OS_HUGE *MemPtr)

Check if a pointer is pointing into the memory pool. However, it is not checked whether it is a pointer to an allocated
block, only the address range of the memory pool is used.

Parameters

*MemPtr a pointer

Return Value

OS_NO_ERR Pointer points into the memory-pool

"1" Pointer does'nt point into the memory-pool

Example

void OS_FAR Task1(void *data)
{
 U08 OS_HUGE *Addr_p;
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_MemAlloc(&Addr_p, 3800);
 .
 .
 state = OS_MemVerifyPtr(Addr_p);
 if (state == OS_NO_ERR)
 {
 .
 state = OS_MemFree(Addr_p);
 }
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 38/100

SmartMessageQueue

OS_SMQueueInit

U08 OS_SMQueueInit(OS_SMQ *psmq, void OS_HUGE *buffer, U16 deep)

Initialize a SmartMessageQueue. A SmartMessageQueue is used to transfer data by means of a pointer to another
process according to the FIFO principle. If the pointer points to an allocated memory block, the ownership of this block is
also transferred. If the pointer does not point to an allocated memory block, the risk remains with the user because a
non-specific pointer is passed directly. Within this SmartMessageQueue, <deep> pointers can be passed to other
processes through the kernel buffer <* buffer>. The buffer can be generated by direct declaration (OS_STK_TYPE SMQ_d
[deep]) or by dynamic allocation. For dynamic allocation in segment-based storage management systems, the type
declaration OS_HUGE is required to address an area across segment boundaries.

Parameters

*psmq pointer to SmartMessageQueue

*buffer pointer to kernel-buffer

deep size of kernel-buffer in "void *"

Return Value

OS_NO_ERR SmartMessageQueue initialized

Example

OS_SMQ MQueue;
OS_STK_TYPE MQueue_d[16];

void main(void)
{
 U08 state;

 .
 .
 OS_Init();
 .
 state = OS_SMQueueInit(&MQueue, MQueue_d, 16);
 .
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 39/100

OS_SMQueueInfo

U08 OS_SMQueueInfo(OS_SMQ *psmq, U16 *deep, U16 *used, U08 *prio)

Query the status of a SmartMessageQueue. This query can be used to determine various parameters of their initialization
and their fill level. Furthermore, the priority of the waiting task can be determined.

Parameters

*psmq pointer to SmartMessageQueue

*deep pointer to variable will get the max pointer in pipe

*used pointer to variable will get the used-pointer at this time

*prio pointer to variable will get the priority of waiting Task (if zero - no Task is
waiting)

Return Value

OS_NO_ERR no error (for extensions)

OS_SMQ_ERR no *psmq pointer given

Example

OS_SMQ MQueue;

void OS_FAR Task1(void *data)
{
 U08 state;
 U16 deep;
 U16 used;
 U08 prio;

 .
 .
 while(1)
 {
 .
 state = OS_SMQueueInfo(&MQueue, &deep, &used, &prio);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 40/100

OS_SMQueueClear

U08 OS_SMQueueClear(OS_SMQ *psmq)

Clears the contents of a SmartMessageQueue and reactivates a pending send process. This feature can be used for error
handling to restart the data transfer. Included pointers to an allocated memory block are released, otherwise the pointers
are deleted and lost.

Parameters

*psmq pointer to SmartMessageQueue

Return Value

OS_NO_ERR SmartMessageQueue content deleted

Example

OS_SMQ MQueue;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 .
 state = OS_SMQueueClear(&MQueue);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 41/100

OS_SMQueuePost

U08 OS_SMQueuePost(OS_SMQ * psmq, void OS_HUGE **msg, U16 timeout)

Sends a pointer to a SmartMessageQueue. If the pointer points to an allocated memory block, the kernel takes ownership
of this block and clears the sender's pointer. With OS_NO_SUSP is returned immediately even if the
SmartMessageQueue was full and with OS_SUSPEND is waited until the pointer can be entered (if necessary, endless).

Parameters

*psmq pointer to SmartMessageQueue

**msg pointer to pointer

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR pointer sent into SmartMessageQueue

OS_SMQ_FULL SmartMessageQueue full (on OS_NO_SUSP)

OS_TIMEOUT SmartMessageQueue full (after waiting)

Example

typedef struct user_s {
 U08 state;
 U16 len;
 U16 curr_offs;
 U08 data[];
} User_st;

OS_SMQ MQueue;

void OS_FAR Task1(void *data)
{
 User_st OS_HUGE *user_p;
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_MemAlloc(&user_p, sizeof(User_st) + 380); // struct + user-data
 .
 .
 state = OS_SMQueuePost(&MQueue, &user_p, 500);
 if (state == OS_NO_ERR)
 {
 .
 if (user_p == NULL)
 // ownership of memory-pool pointer was taken by kernel
 .
 }
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 42/100

OS_SMQueueFrontPost

U08 OS_SMQueueFrontPost(OS_SMQ * psmq, void OS_HUGE **msg, U16 timeout)

Sends a pointer to the beginning of a SmartMessageQueue. Thus, this pointer is first read out by the receiver (push
forward). If the pointer points to an allocated memory block, the kernel takes ownership of this block and clears the
sender's pointer. With OS_NO_SUSP is returned immediately even if the SmartMessageQueue was full and with
OS_SUSPEND is waited until the pointer can be entered (if necessary, endless).

Parameters

*psmq pointer to SmartMessageQueue

**msg pointer to pointer

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR pointer sent into SmartMessageQueue

OS_SMQ_FULL SmartMessageQueue full (on OS_NO_SUSP)

OS_TIMEOUT SmartMessageQueue full (after waiting)

Example

typedef struct user_s {
 U08 state;
 U16 len;
 U16 curr_offs;
 U08 data[];
} User_st;

OS_SMQ MQueue;

void OS_FAR Task1(void *data)
{
 User_st OS_HUGE *user_p;
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_MemAlloc(&user_p, sizeof(User_st) + 380); // struct + user-data bytes
 .
 .
 state = OS_SMQueueFrontPost(&MQueue, &user_p, 500);
 if (state == OS_NO_ERR)
 {
 .
 if (user_p == NULL)
 // ownership of memory-pool pointer was taken by kernel
 .
 }
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 43/100

OS_SMQueuePostAbbort

U08 OS_SMQueuePostAbbort(OS_SMQ * psmq)

Cancels the waiting of a sending task at the SmartMessageQueue.
Only the waiting task with the highest priority is quasi "prematurely" sent to TimeOut.

Parameters

*psmq pointer to SmartMessageQueue

Return Value

OS_NO_ERR Waiting for a task aborted

OS_TASK_NOT_EXIST no task is waiting at the SmartMessageQueue

Example

OS_SMQ MQueue;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_SMQueuePostAbbort(&MQueue);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 44/100

OS_SMQueuePend

U08 OS_SMQueuePend(OS_SMQ * psmq, void OS_HUGE **msg, U16 timeout)

Wait for a pointer from a SmartMessageQueue. If the pointer points to an allocated memory block, the ownership of this
block is transferred to the receiver. With OS_NO_SUSP is returned immediately even if no pointer was present and with
OS_SUSPEND waits until a pointer is present (if necessary, endless).

Parameters

*psmq pointer to SmartMessageQueue

**msg pointer to pointer

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR pointer get from SmartMessageQueue

OS_SMQ_NODATA no pointer in SmartMessageQueue (on OS_NO_SUSP)

OS_TIMEOUT no pointer in SmartMessageQueue (after waiting)

Example

typedef struct user_s {
 U08 state;
 U16 len;
 U16 curr_offs;
 U08 data[];
} User_st;

OS_SMQ MQueue;

void OS_FAR Task1(void *data)
{
 User_st OS_HUGE *user_p;
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_SMQueuePend(&MQueue, &user_p, OS_SUSPEND);
 .
 .
 if ((user_p != NULL) && (!OS_MemVerifyPtr(user_p)))
 state = OS_MemFree(user_p);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 45/100

OS_SMQueuePendAbbort

U08 OS_SMQueuePendAbbort(OS_SMQ * psmq)

Cancels the waiting for a receiving task at the SmartMessageQueue.
Only the waiting task with the highest priority is quasi "prematurely" sent to TimeOut.

Parameters

*psmq pointer to SmartMessageQueue

Return Value

OS_NO_ERR Waiting for a task aborted

OS_TASK_NOT_EXIST no task is waiting at the SmartMessageQueue

Example

OS_SMQ MQueue;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_SMQueuePendAbbort(&MQueue);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 46/100

Mailboxes

OS_MboxInit

U08 OS_MboxInit(OS_MBOX *pmbox)

Initialization of a Mailbox. Through a mailbox any kind of data can pass by a pointer. On this, the recipient receives a
pointer in the data field of the sender!

Parameters

*pmbox pointer to Mailbox

Return Value

OS_NO_ERR Mailbox initialized

Example

OS_MBOX MailBox1;

void main(void)
{
 U08 state;

 .
 .
 OS_Init();
 .
 state = OS_MboxInit(&MailBox1);
 .
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 47/100

OS_MboxPend

U08 OS_MboxPend(OS_MBOX *pmbox, void OS_FAR *msg, U16 timeout)

Waits for a message from a mailbox. With OS_NO_SUSP, it immediately is come back even if no news was available and
becomes with OS_SUSPEND as long as waited until a message is available, if necessary unending.

Parameters

*pmbox pointer to Mailbox

*msg pointer to receiving parameter (U32)

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Message from Mailbox gotten

OS_MBOX_NODATA no message in Mailbox (with OS_NO_SUSP)

OS_TIMEOUT no message in Mailbox (after waits)

Example

OS_MBOX MailBox1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U32 Message;

 .
 .
 while(1)
 {
 .
 state = OS_MboxPend(&MailBox1, &Message, 200);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 48/100

OS_MboxPendAbbort

U08 OS_MboxPendAbbort(OS_MBOX *pmbox)

Abborts waiting of a receiving Tasks (highest waiting prio) on a Mailbox. It is only the waiting task with the highest
priority quasi "premature" to TimeOut forwarded.

Parameters

*pmbox pointer to Mailbox

Return Value

OS_NO_ERR pending of a task abborted

OS_TASK_NOT_EXIST no pending task on this Maibox

Example

OS_MBOX MailBox1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_MboxPendAbbort(&MailBox1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 49/100

OS_MboxPost

U08 OS_MboxPost(OS_MBOX *pmbox, void OS_FAR *msg, U16 timeout)

Sends a message into a Mailbox. With OS_NO_SUSP, it immediately is come back even if the Mailbox was full and
becomes with OS_SUSPEND as long as waited until the message can be written down, if necessary unending.

Parameters

*pmbox pointer to Mailbox

*msg pointer to message (U32)

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Message in Mailbox sent

OS_MBOX_FULL Mailbox fully (with OS_NO_SUSP)

OS_TIMEOUT Mailbox fully (after waits)

Example

OS_MBOX MailBox1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U32 Message;

 .
 .
 while(1)
 {
 .
 Message =0x3076;
 state = OS_MboxPost(&MailBox1, &Message, OS_SUSPEND);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 50/100

OS_MboxPostAbbort

U08 OS_MboxPostAbbort(OS_MBOX *pmbox)

Abborts waiting of a sending Tasks (highest waiting prio) on a Mailbox. It is only the waiting task with the highest priority
quasi "premature" to TimeOut forwarded.

Parameters

*pmbox pointer to Mailbox

Return Value

OS_NO_ERR posting of a task abborted

OS_TASK_NOT_EXIST no posting task on this Maibox

Example

OS_MBOX MailBox1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_MboxPostAbbort(&MailBox1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 51/100

Queues

OS_QueueInit

U08 OS_QueueInit(OS_Q *pq, void OS_HUGE *buffer, U16 size)

Initialize a Queue. A Queue serves the byte-expels transfer of data at another process of the FIFO-prinzip. Within this
Queue can <size> byte through the kernel buffer <*buffer> at other processes is handed over. The buffer can be
generated through direct declaration (UBYTE buffer[size]) or through dynamic allocation. For the dynamic allocation in
systems with segment-based memory management, the type declaration is OS_HUGE necessary in order to be able to go
down well away with an area over segment borders.

Parameters

*pq pointer to Queue

*buffer pointer to kernel-buffer

size size of kernel-buffer in bytes

Return Value

OS_NO_ERR Queue initialized

Example

OS_Q Queue1;

U08 Q_Data1[256];

void main(void)
{
 U08 state;

 .
 .
 OS_Init();
 .
 state = OS_QueueInit(&Queue1, &Q_Data1[0], 256);
 .
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 52/100

OS_QueueInfo

U08 OS_QueueInfo(OS_Q *pq, U16 *size, U16 *used, U08 *prio)

Retrieval of the status of a Queue. Through this retrieval, miscellaneous parameters their initialization as well as their
filling stand can be determined. Furthermore, the priority of the waiting tasks can be determined.

Parameters

*pq pointer to Queue

*size pointer to variable will get the size

*used pointer to variable will get the used-bytes at this time

*prio pointer to variable will get the priority of waiting Task (if zero - no Task is
waiting)

Return Value

OS_NO_ERR no mistake (for expansions)

Example

OS_Q Queue1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U16 size;
 U16 used;
 U08 prio;

 .
 .
 while(1)
 {
 .
 state = OS_QueueInfo(&Queue1, &size, &used, &prio);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 53/100

OS_QueuePend

U08 OS_QueuePend(OS_Q *pq, U08 OS_FAR *msg, U16 timeout)

Wait on one byte from a Queue. With OS_NO_SUSP, it immediately is come back even if no bytes were available and
become with OS_SUSPEND as long as waited until one byte is available, if necessary unending.

Parameters

*pq pointer to Queue

*msg pointer to receiving Byte

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Byte from Queue gotten

OS_Q_NODATA no byte in Queue (with OS_NO_SUSP)

OS_TIMEOUT no byte in Queue (after waits)

Example

OS_Q Queue1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U08 Receive;

 .
 .
 while(1)
 {
 .
 state = OS_QueuePend(&Queue1, &Receive, 100);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 54/100

OS_QueuePendAbbort

U08 OS_QueuePendAbbort(OS_Q *pq)

Abborts waiting of a receiving Tasks (highest waiting prio) on a Queue. It is only the waiting task with the highest priority
quasi "premature" to TimeOut forwarded.

Parameters

*pq pointer to Queue

Return Value

OS_NO_ERR pending of a task abborted

OS_TASK_NOT_EXIST no pending task on this Queue

Example

OS_Q Queue1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_QueuePendAbbort(&Queue1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 55/100

OS_QueuePost

U08 OS_QueuePost(OS_Q *pq, U08 msg, U16 timeout)

Sends one byte into a Queue. With OS_NO_SUSP, it immediately is come back even if the Queue was full and becomes
with OS_SUSPEND as long as waited until the byte can be written down, if necessary unending.

Parameters

*pq pointer to Queue

msg byte to send

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Byte in Queue sent

OS_Q_FULL Queue fully (with OS_NO_SUSP)

OS_TIMEOUT Queue fully (after waits)

Example

OS_Q Queue1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U08 Message;

 .
 .
 while(1)
 {
 .
 Message = 0x6A;
 state = OS_QueuePost(&Queue1, Message, 5000);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 56/100

OS_QueueFrontPost

U08 OS_QueueFrontPost(OS_Q *pq, U08 msg, U16 timeout)

Sends one byte at the beginning of a Queue. Consequently, this byte first is finished reading again by the recipient (cuts
in line). With OS_NO_SUSP, it immediately is come back even if the Queue was full and becomes with OS_SUSPEND as
long as waited until the byte can be written down, if necessary unending.

Parameters

*pq pointer to Queue

msg byte to send

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Byte in Queue sent

OS_Q_FULL Queue fully (with OS_NO_SUSP)

OS_TIMEOUT Queue fully (after waits)

Example

OS_Q Queue1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U08 Message;

 .
 .
 while(1)
 {
 .
 Message = 0x2D;
 state = OS_QueueFrontPost(&Queue1, Message, OS_NO_SUSP);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 57/100

OS_QueuePostAbbort

U08 OS_QueuePostAbbort(OS_Q *pq)

Abborts waiting of a sending Tasks (highest waiting prio) on a Queue.
It is only the waiting task with the highest priority quasi "premature" to TimeOut forwarded.

Parameters

*pq pointer to Queue

Return Value

OS_NO_ERR posting of a task abborted

OS_TASK_NOT_EXIST no posting task on this Queue

Example

OS_Q Queue1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_QueuePostAbbort(&Queue1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 58/100

OS_QueueClear

U08 OS_QueueClear(OS_Q *pq)

Deletes the content of a Queue and reactivates a waiting posting-process. This function can be used to reactivate the
datatransfer after a hang-on. The deleted data get lost on that occasion.

Parameters

*pq pointer to Queue

Return Value

OS_NO_ERR content of Queue deleted

Example

OS_Q Queue1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 .
 state = OS_QueueClear(&Queue1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 59/100

Pipes

OS_PipeInit

U08 OS_PipeInit(OS_P *pp, void OS_HUGE *buffer, U16 size, U08 deep)

Initialize a pipe. A pipe is used to transfer data in packets to another process in FIFO-style.
The kernel offers two different modi to choose at the time of creation.

array-modi:
The pipe works with a permanently assigned array of fixed size. Within this pipe maximum <deep> packages with a
maximum of <size> bytes of a packet through the kernel buffer <*buffer> be transferred to another process. A packet
can be between 1 byte and <size> bytes large but always occupies one row of the array of <size> bytes.
The buffer can be generated by direct declaration (U08 Buffer[(size+2)*deep]) or by dynamic allocation. For
dynamic allocation in segment-based storage management systems, the type declaration OS_HUGE is required to
address an area across segment boundaries. The additional length of 2 bytes per packet is required for the storage of
packet length.

dynamic-modi:
The pipe uses the kernel memory manager and automatically allocates the required memory for a packet (plus 6 bytes of
management) and release it again after reading of the package. Thus, only the memory required for a packet is always
allocated (plus 6 bytes of pipe concatenation + n bytes of memory manager). As a result, this pipe is never full, only the
free memory of the memory manager can be used up. Depending on the location and fragmentation of the memory, it
can not be determined where the package is stored exactly. Furthermore, the accumulated packages within the pipe are
directly concatenated and are therefore prone to erroneous memory accesses by user-tasks.
In addition, the processing of 'allocate + copy' and 'copy + free' are interruptible mostly by interrupts and partly by
sheduling. The integrity is secure at all times, but occasionally these processing may take a long time to complete.
Furthermore, a sending task during 'OS_PipePost(..)' should NEVER be destroyed by an ISR or other task using
'OS_TaskDestroy(..)'.

Parameters

*pp pointer to Pipe

*buffer pointer to kernel-buffer (array mode)

size max size of data-bytes per paket (array mode)

deep max pakets in pipe (array mode)

Return Value

OS_NO_ERR Pipe initialized

Example

OS_P PipeA;
OS_P PipeD;

U08 P_DataA[(MAXPAKET+2)*8];

void main(void)
{
 U08 state;

 .
 .
 OS_Init();
 .
 state = OS_PipeInit(&PipeA, P_DataA, MAXPAKET+2, 8); // use array-modi of 'size*deep'
 .
 state = OS_PipeInit(&PipeD, NULL, 0, 0); // use dynamic-modi (Memory-Manager)
 .
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 60/100

OS_PipeInfo

U08 OS_PipeInfo(OS_P *pp, U16 *size, U08 *deep, U08 *used, U08 *prio)

Retrieval of the status of a Pipe. Through this retrieval, miscellaneous parameters of their initialization as well as their
filling stand can be determined. Furthermore, the priority of the waiting Tasks can be determined.

Parameters

*pp pointer to Pipe

*size pointer to variable will get the size per paket

*deep pointer to variable will get the max pakets in pipe

*used pointer to variable will get the used-pakets at this time

*prio pointer to variable will get the priority of waiting Task (if zero - no Task is
waiting)

Return Value

OS_NO_ERR no mistake (for expansions)

Example

OS_P Pipe1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U16 size;
 U08 deep;
 U08 used;
 U08 prio;

 .
 .
 while(1)
 {
 .
 state = OS_PipeInfo(&Pipe1, &size, &deep, &used, &prio);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 61/100

OS_PipePend

U08 OS_PipePend(OS_P *pp, U08 OS_HUGE *msg, U16 *lng, U16 timeout)

Waits on a data package from a Pipe. The receiver-buffer must be included sufficiently big in order to be able to pick up
the package. Since the receiver-buffer can also be dynamically allocated, the type declaration is OS_HUGE necessary on
the other hand in order to be able to go down well away with an area over segment borders. With OS_NO_SUSP, it
immediately is come back even if no package was available and becomes with OS_SUSPEND as long as waited until one
package is available, if necessary unending.

Parameters

*pp pointer to Pipe

*msg pointer to receiving array

*lng pointer to variable will get the lenght of paket

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Package from Pipe gotten

OS_P_NODATA no package in Pipe (with OS_NO_SUSP)

OS_TIMEOUT no package in Pipe (after waits)

Example

OS_P Pipe1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U16 rLenght;
 U08 Receive[1024];

 .
 .
 while(1)
 {
 .
 state = OS_PipePend(&Pipe1, Receive, &rLenght, OS_SUSPEND);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 62/100

OS_PipePendAbbort

U08 OS_PipePendAbbort(OS_P *pp)

Abborts waiting of a receiving Tasks (highest waiting prio) on a Pipe. It is only the waiting task with the highest priority
quasi "premature" to TimeOut forwarded.

Parameters

*pp pointer to Pipe

Return Value

OS_NO_ERR pending of a task abborted

OS_TASK_NOT_EXIST no pending task on this Pipe

Example

OS_P Pipe1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_PipePendAbbort(&Pipe1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 63/100

OS_PipePost

U08 OS_PipePost(OS_P *pp, U08 OS_HUGE *msg, U16 lenght, U16 timeout)

Sends one package into a Pipe. So the transmitter-buffer also dynamically allocated can be, the type declaration is
OS_HUGE necessary on the other hand in order to be able to go down well away with an area over segment borders.
With OS_NO_SUSP, it immediately is come back even if the Pipe was full and becomes with OS_SUSPEND as long as
waited until the package can be written down, if necessary unending.

Parameters

*pp pointer to Pipe

*msg pointer to data-paket

lenght lenght of data-paket

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Package in Pipe sent

OS_P_FULL Pipe fully (with OS_NO_SUSP) - on array-modi

OS_P_LEN_ERR Package too long - on array-modi

OS_TIMEOUT Pipe fully (after waits) - on array-modi

see OS_MemAlloc() memory error - on dynamic-modi

Example

OS_P Pipe1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U08 Message[]={"Hello World!"};

 .
 .
 while(1)
 {
 .
 .
 state = OS_PipePost(&Pipe1, Message, strlen(Message), 500);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 64/100

OS_PipeFrontPost

U08 OS_PipeFrontPost(OS_P *pp, U08 OS_HUGE *msg, U16 lenght, U16 timeout)

Sends one package at the beginning of a Pipe. Consequently, this package first is finished reading again by the recipient
(cuts in line). Since the transmitter-buffer can also be dynamically allocated, the type declaration is OS_HUGE necessary
on the other hand in order to be able to go down well away with an area over segment borders. With OS_NO_SUSP, it
immediately is come back even if the Pipe was full and becomes with OS_SUSPEND as long as waited until the package
can be written down, if necessary unending.

Parameters

*pp pointer to Pipe

*msg pointer to data-paket

lenght lenght of data-paket

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Package in Pipe sent

OS_P_FULL Pipe fully (with OS_NO_SUSP) - on array-modi

OS_P_LEN_ERR Package too long - on array-modi

OS_TIMEOUT Pipe fully (after waits) - on array-modi

see OS_MemAlloc() memory error - on dynamic-modi

Example

OS_P Pipe1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U08 Message[]={"Hallo Welt !"};

 .
 .
 while(1)
 {
 .
 .
 state = OS_PipeFrontPost(&Pipe1, Message, strlen(Message), OS_NO_SUSP);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 65/100

OS_PipePostAbbort

U08 OS_PipePostAbbort(OS_P *pp)

Abborts waiting of a sending Tasks (highest waiting prio) on a Pipe. It is only the waiting task with the highest priority
quasi "premature" to TimeOut forwarded.

Parameters

*pp pointer to Pipe

Return Value

OS_NO_ERR posting of a task abborted

OS_TASK_NOT_EXIST no posting task on this Pipe

Example

OS_P Pipe1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_PipePostAbbort(&Pipe1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 66/100

OS_PipeClear

U08 OS_PipeClear(OS_P *pp)

Deletes the content of a Pipe and reactivates a waiting transmitter-process. This function can be used to reactivate the
datatransfer after a hang-on. The deleted packages get lost on that occasion.

Parameters

*pp pointer to Pipe

Return Value

OS_NO_ERR Pipe-content deleted

Example

OS_P Pipe1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 .
 state = OS_PipeClear(&Pipe1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 67/100

inter-core AMP-Pipe

OS_IccInit

U08 OS_IccInit(void)

Initialize the AMP-pipe pair. The AMP-pipe pair is used for the packet-wise transfer of data to another processor core
according to the FIFO principle.

The maximum size of a packet, the maximum number of packets and the memory location is specified in the hardware-
dependent adaptation 'OS_ICC_xxx.c' in order to provide both processor cores with exactly identical values.
A packet can be between 1 byte and <size> bytes in size, but always occupies one line of the array of <size> bytes.
The additional length of 2 bytes per packet is required to store the real packet length.

Parameters

none

Return Value

OS_NO_ERR AMP-pipe pair initialized

Example

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 state = OS_IccInit();
 .
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 68/100

OS_IccInfo

U08 OS_IccInfo(U16 *size, U08 *deep, U08 *usedRx, U08 *usedTx)

Query the status of the AMP-pipe pair. This query can be used to determine various initialization parameters and their fill
levels.

Parameters

*size pointer to variable will get the size per paket

*deep pointer to variable will get the max pakets in pipe

*usedRx pointer to variable will get the receiving AMP-Pipe used-pakets at this time

*usedTx pointer to variable will get the tranmitting AMP-Pipe used-pakets at this
time

Return Value

OS_NO_ERR no error (for extensions)

Example

void OS_FAR Task1(void *data)
{
 U08 state;
 U16 size;
 U08 deep;
 U08 usedRx, usedTx;

 .
 .
 while(1)
 {
 .
 state = OS_IccInfo(&size, &deep, &usedRx, &usedTx);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 69/100

OS_IccPost

U08 OS_IccPost(U08 OS_HUGE *msg, U16 lenght, U16 timeout)

Sends a packet in the AMP-pipe to the other core. Since the sender buffer can also be dynamically allocated, the type
declaration OS_HUGE is required in order to be able to address an area across segment boundaries. OS_NO_SUSP
returns immediately, even if the AMP-pipe was full, and OS_SUSPEND waits until the package can be entered (if
necessary, endlessly).

Parameters

*msg pointer to data-paket

lenght lenght of data-paket

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Packet sent in AMP-pipe

OS_ICC_FULL AMP-pipe full (at OS_NO_SUSP)

OS_ICC_LEN_ERR Packet too long

OS_TIMEOUT AMP-pipe full (after waiting)

Example

void OS_FAR Task1(void *data)
{
 U08 state;
 U08 Message[]={"Hi other core!"};

 .
 .
 while(1)
 {
 .
 .
 state = OS_IccPost(Message, strlen(Message), 500);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 70/100

OS_IccPend

U08 OS_IccPend(U08 OS_HUGE *msg, U16 *lng, U16 timeout)

Wait for a packet from the AMP-pipe from the other core. The recipient buffer must be large enough to accommodate the
package. Since the recipient buffer can also be dynamically allocated, the type declaration OS_HUGE is required in order
to be able to address an area across segment boundaries. OS_NO_SUSP returns immediately, even if there was no
package, and OS_SUSPEND waits until a package is available (if necessary, endlessly).

Parameters

*msg pointer to receiving array

*lng pointer to variable will get the lenght of paket

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Receive package from AMP-pipe

OS_ICC_NODATA no package in AMP-pipe (with OS_NO_SUSP)

OS_TIMEOUT no package in AMP-pipe (after waiting)

Example

void OS_FAR Task1(void *data)
{
 U08 state;
 U16 rLenght;
 U08 Receive[512];

 .
 .
 while(1)
 {
 .
 state = OS_IccPend(Receive, &rLenght, OS_SUSPEND);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 71/100

OS_IccClear

U08 OS_IccClear(void)

Deletes the content of the respective sending AMP pipe and reactivates a waiting sending process. This function can be
used for error handling to restart the data transfer. The deleted packages are lost.

Parameters

none

Return Value

OS_NO_ERR AMP pipe content deleted

Example

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 .
 state = OS_IccClear();
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 72/100

Semaphores

OS_SemInit

U08 OS_SemInit(OS_SEM *psem, U16 cnt)

Initialize a Semaphore. One semaphores serves the process-syncronisation. Two variations of the utilization belong
semaphores to it to one.
- binary: for example the syncronisation of accesses on common recources/variables
- counting: Attendants on entering of a signal, to the control of the sequence of processes.

With a binary semaphore, a state-machine can become protected before simultaneous accesses of different processes
(Read/Write), for example. So, inconsistent conditions or data are avoided. Can appear however in some cases Priority
Inversion, occupied i.e. this a low Task the recource, a higher Task therefore must wait and then for example through an
INT a middle Task (and its heirs) whom lower Task interrupts for an uncertain time. In such a case, it is initialized the
semaphores with 1 as cnt, the access asked by means of OS_SemPend and released again by means of OS_SemPost.

With a counting semaphore, arriving is signalled by events. So, a process can wait for a signal to pause about the
sequence of processes. By means of OS_SemAccept, also the number of the meanwhile entered events can be
determined on that occasion. In such a case, it is initialized the semaphores with 0 as cnt, waited on the event by means
of OS_SemPend or OS_SemAccept and reported the event by means of OS_SemPost.

Parameters

*psem pointer to Semaphore

Return Value

OS_NO_ERR Semaphore initialized

Example

OS_SEM State1;

void main(void)
{
 U08 state;

 .
 .
 OS_Init();
 .
 state = OS_SemInit(&State1, 1);
 .
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 73/100

OS_SemPend

U08 OS_SemPend(OS_SEM *psem, U16 timeout)

Reserve one on the protected recource semaphore and consequently the access as well as wait for an event. With
OS_NO_SUSP, it immediately is come back even if was not freely the semaphores as well as no event was available and
becomes with OS_SUSPEND as long as waited until the semaphores the event could be reserved as well as could happen,
if necessary unending.

Parameters

*psem pointer to Semaphore

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Semaphore reserve / event was available

OS_SEM_NODATA Semaphore occupy / no event (with OS_NO_SUSP)

OS_TIMEOUT Semaphore occupy / no event (after waits)

Example

OS_SEM State1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_SemPend(&State1, OS_SUSPEND);
 .
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 74/100

OS_SemPendAbbort

U08 OS_SemPendAbbort(OS_SEM *psem)

Abborts waiting of a Tasks (highest waiting prio) on a Semaphore. It is only the waiting task with the highest priority
quasi "premature" to TimeOut forwarded.

Parameters

*psem pointer to Semaphore

Return Value

OS_NO_ERR pending of a task abborted

OS_TASK_NOT_EXIST no pending task on this Semaphore

Example

OS_SEM State1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_SemPendAbbort(&State1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 75/100

OS_SemAccept

U08 OS_SemAccept(OS_SEM *psem, U16 *cnt, U16 timeout)

It is used as Event-Counter with utilization of the semaphores. The Semaphore-counter is not influenced on that
occasion. If the counter bigger than 0 the current counter will return. With OS_NO_SUSP, it immediately is come back
even if the semaphoren-counter 0 is and becomes with OS_SUSPEND as long as waited until the event once appeared, if
necessary unending.

Parameters

*psem pointer to Semaphore

*cnt pointer to variable will get the counter-value

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Event min. 1 times happened

OS_SEM_NODATA Counter immediately 0 (with OS_NO_SUSP)

OS_TIMEOUT Counter immediately 0 (after waits)

Example

OS_SEM Event1;

void OS_FAR Task1(void *data)
{
 U08 state;
 U16 EventCnt;

 .
 .
 while(1)
 {
 .
 state = OS_SemAccept(&Event1, &EventCnt, 500);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 76/100

OS_SemPost

U08 OS_SemPost(OS_SEM *psem)

Gives a retiring semaphore and consequently the access to the protected recource again freely as well as signals an
event.

Parameters

*psem pointer to Semaphore

Return Value

OS_NO_ERR Semaphores released / event reported

OS_SEM_OVF Error in the Semaphore-handling (Counter too big)

Example

OS_SEM State1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 .
 state = OS_SemPost(&State1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 77/100

OS_SemClear

U08 OS_SemClear(OS_SEM *psem)

Deletes the Counter of the semaphore. This function can be used to reset a counting-semaphore or for error-handling to
restart the semaphore-handling. With application of binary semaphore to the control of accesses on a protected recource
must be released the semaphore in the connection with application to the mistake-handling by OS_SemPost so much
times, how simultaneously processes can access the recource.

Parameters

*psem pointer to Semaphore

Return Value

OS_NO_ERR count of semaphore reset to 0

Example

OS_SEM State1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_SemClear(&State1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 78/100

Mutexes

OS_MutexCreate

U08 OS_MutexCreate(OS_MUX *pmux, U08 prio)

Aims as well as initializing of a Mutex (Mutual-Exclusion). A Mutex serves the syncronisation of accesses to common
recources/variables. With a Mutex, state-machines are protected from simultaneous accesses of different processes
(Read/Write), for example. The second process must wait, until the first process finished his access (Read/Write). So,
inconsistent conditions or data are avoided. In contrast to the utilization of semaphores, the effect of the Priority
Inversion cannot kick open on that occasion here. The priority of the Mutex must be included higher, as the highest
priority of the Tasks accessing it. The Mutex is written down as not current Task, so under the same priority no other Task
can run.

Parameters

*pmux pointer to Mutex

Return Value

OS_NO_ERR Mutex written down and initialized

Example

OS_MUX Mutex1;

void main(void)
{
 U08 state;

 .
 .
 OS_Init();
 .
 state = OS_MutexCreate(&Mutex1, 10);
 .
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 79/100

OS_MutexPend

U08 OS_MutexPend(OS_MUX *pmux, U16 timeout)

Reserve a Mutex and consequently the access on the protected recource. With OS_NO_SUSP, it immediately is come back
even if the Mutex was not free and becomes with OS_SUSPEND as long as waited until the Mutex could be reserved, if
necessary unending.

Parameters

*pmux pointer to Mutex

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Mutex reserved

OS_MUX_NOACC Mutex is occupied (with OS_NO_SUSP)

OS_TIMEOUT Mutex is occupied (after waits)

OS_MUX_ERR Error in Mutex-handling

Example

OS_MUX Mutex1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_MutexPend(&Mutex1, OS_SUSPEND);
 .
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 80/100

OS_MutexPendAbbort

U08 OS_MutexPendAbbort(OS_MUX *pmux)

Abborts waiting of a Tasks (highest waiting prio) on a Mutex.
It is only the waiting task with the highest priority quasi "premature" to TimeOut forwarded.

Parameters

*pmux pointer to Mutex

Return Value

OS_NO_ERR pending of a task abborted

OS_TASK_NOT_EXIST no pending task on this Mutex

Example

OS_MUX Mutex1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_MutexPendAbbort(&Mutex1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 81/100

OS_MutexPost

U08 OS_MutexPost(OS_MUX *pmux)

Gives a reserved Mutex free and again the access on the protected recource.

Parameters

*pmux pointer to Mutex

Return Value

OS_NO_ERR Mutex released

OS_MUX_ERR Error in Mutex-handling

Example

OS_MUX Mutex1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 .
 state = OS_MutexPost(&Mutex1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 82/100

Event-Groups

OS_EvgInit

U08 OS_EvgInit(OS_EVG *pevg)

Initialize an Eventgroup. An Eventgroup consists individually can be processed of 32 single-events, that summarized in an
ULONG, as also grouped. Each Event within the group can report the appearance of an event, however any statement
about it doesn't meet, how often the event appeared in the meantime. In order to also be able to count events, you must
be used semaphores as Counting-Semaphore for every individual event. (semaphore with 0 initialize, at appearance of
the event "OS_SemPost" and when wait "OS_SemAccept")

Parameters

*pevg pointer to Eventgroup

Return Value

OS_NO_ERR Event-group initialized

Example

OS_EVG Events1;

void main(void)
{
 U08 state;

 .
 .
 OS_Init();
 .
 state = OS_EvgInit(&Events1);
 .
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 83/100

OS_EvgPost

U08 OS_EvgPost(OS_EVG *pevg, U32 events, U08 mode)

Report the appearance an as well as several Events of an Eventgroup. The bit mask is interpreted as OR of the Events on
that occasion. I.e. all Events, that are set in the bit mask, are reported. Mode is used the utilization of this function for
the erasure of Events.

Parameters

*pevg pointer to Eventgroup

events bit-mask of events

mode mode of usement "OS_EVG_OR / OS_EVG_CLR"

Return Value

OS_NO_ERR Event(s) reported

Example

OS_EVG Events1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_EvgPost(&Events1,~0x00101000, OS_EVG_CLR); // clear this events
 state = OS_EvgPost(&Events1, 0x01000100, OS_EVG_OR); // set this events
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 84/100

OS_EvgPend

U08 OS_EvgPend(OS_EVG *pevg, U32 *events, U08 mode, U16 timeout)

Waits on one as well as several Events of an Eventgroup. The bit mask is interpreted modes as connection of the Events
on that occasion together with him. I.e., already an Event, that is set in the bit mask, is enough with OS_EVG_OR for the
function and with OS_EVG_AND, all Events, that are set in the bit mask, had to arrive. For a special case events of an
Eventgroup can wake up multiple tasks at once. For this the Eventgroup differs on EvgPend and EvgPost between
"OS_EVG_OR_C / OS_EVG_AND_C" for normal use (consuming event) or just "OS_EVG_OR / OS_EVG_AND" to wake up
multiple tasks. But the events are then manually to delete again by a task. After returning the bit mask contains the
occurred events that triggered the return. With OS_NO_SUSP, it immediately is come back even if no Event appeared and
becomes with OS_SUSPEND as long as waited until the Event(s) appeared, if necessary indefinitely.

Parameters

*pevg pointer to Eventgroup

*events pointer to bit-mask of events waiting for, returns the events on return

mode mode of usement "OS_EVG_OR_C / OS_EVG_AND_C"

timeout kernel-ticks as waiting-time (1...65534)

Return Value

OS_NO_ERR Event(s) appeared

OS_EVG_NOE Event(s) not appeared (with OS_NO_SUSP)

OS_TIMEOUT Event(s) not appeared (after waits)

Example

OS_EVG Events1;

void OS_FAR Task1(void *data)
{
 U32 event;
 U08 state;

 .
 .
 while(1)
 {
 .
 event = 0x00100100;
 state = OS_EvgPend(&Events1, &event, OS_EVG_OR_C, OS_SUSPEND);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 85/100

OS_EvgPendAbbort

U08 OS_EvgPendAbbort(OS_EVG *pevg)

Abborts waiting of a task (highest waiting prio) onto a Eventgroup. It is only the waiting task with the highest priority
quasi "premature" to TimeOut forwarded.

Parameters

*pevg pointer to Eventgroup

Return Value

OS_NO_ERR pending of a task abborted

OS_TASK_NOT_EXIST no pending task on this eventgroup

Example

OS_EVG Events1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_EvgPendAbbort(&Events1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 86/100

Timer-Service

OS_TimerCreate

U08 OS_TimerCreate(OS_TMR *ptmr, U32 time, void(*tFct)(void *), void *tArg, U08 mode)

Creating / initialize a timer.
A timer can e.g. for subsequent purposes:
• timeouts within protocol layers and applications such as TCP / IP, X25, HTTP, FTP, ...
• prevent the "starvation" of tasks by defining a timeout and corresponding measures such as priority raising or other
• Periodic management of services
• soft-deadline / watchdog of services

As mode subsequent details can be made:
• OS_TMR_ENABLE - starts the Timer immediately
• OS_TMR_RONCE - Timer is of type "run-once", this means single timeout and after it is automatically disabled, but
remains registered
• OS_TMR_CYCL - Timer is of type "cyclic / periodic" this means the timer will automatically restarted after each timeout
• OS_TMR_CLR - Timer is of type "run-once auto-erase," this means the timer is single timeout and is automatically
deleted and must be created new for further use

It is OS_TMR_CLR the scheme goes before OS_TMR_CYCL and this before OS_TMR_RONCE.

The registered callback function should be as short as possible. For information-sharing an argument can be used.

Parameters

*ptmr pointer to Timer

time timeout of this timer (in timer-ticks)

tFct address of timeout-callback function

tArg argument of timeout-callback function

mode mode of this timer (run-once / cyclic / auto-clear)

Return Value

OS_NO_ERR Timer registered and initialized

OS_TMR_NO_TIME no valid time a parameter given (time == 0)

OS_TMR_EXIST Timer was still registered and initialized

Example

OS_TMR Timer1;

void TCP_To_CB(void *session)
{
 OS_QueuePost(&TCPIP_To_Q, (U08)session, OS_NO_SUSP);
}

U08 TCP_send(void)
{
 U08 state;
 U08 session;

 .
 .
 state = OS_TimerCreate(&Timer1, 30, TCP_To_CB, &session, OS_TMR_ENABLE | OS_TMR_CLR);
 .
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 87/100

OS_TimerDelete

U08 OS_TimerDelete(OS_TMR *ptmr)

Deactivate and delete a Timer.

Parameters

*ptmr pointer to Timer

Return Value

OS_NO_ERR Timer deleted

OS_TMR_NOT_EXIST the Timer was not registered

Example

OS_TMR Timer1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_TimerDelete(&Timer1);
 .
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 88/100

OS_TimerStart

U08 OS_TimerStart(OS_TMR *ptmr, U32 time)

Starts a deactivated, restart a run-once or restart a running Timer.

Parameters

*ptmr pointer to Timer

time new timeout (if not zero) of this timer (in timer-ticks)

Return Value

OS_NO_ERR Timer (re-)started

OS_TMR_NOT_EXIST the Timer is not registered

Example

OS_TMR Timer1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 state = OS_TimerStart(&Timer1, 0);
 .
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 89/100

OS_TimerStop

U08 OS_TimerStop(OS_TMR *ptmr)

Stops / deactivat a running Timer.

Parameters

*ptmr pointer to Timer

Return Value

OS_NO_ERR Timer stopped

OS_TMR_NOT_EXIST the Timer is not registered

Example

OS_TMR Timer1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 .
 state = OS_TimerStop(&Timer1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 90/100

OS_TimerGetState

U08 OS_TimerGetState(OS_TMR *ptmr)

Returns the status of a created timer.
The following information is provided:
• OS_TMR_ENABLE - the Timer is actually running
• OS_TMR_RONCE - Timer is of type "run-once", this means single timeout and after it is automatically disabled, but
remains registered
• OS_TMR_CYCL - Timer is of type "cyclic / periodic" this means the timer will automatically restarted after each timeout
• OS_TMR_CLR - Timer is of type "run-once auto-erase," this means the timer is single timeout and is automatically
deleted and must be created new for further use

If in the returns status not OS_TMR_ENABLE but OS_TMR_CLR, the timer was never created or the timer was "run-once
auto-erase" and the time had expired.

Parameters

*ptmr pointer to Timer

Return Value

status status of the timers (see "modi" on OS_TimerCreate)

Example

OS_TMR Timer1;

void OS_FAR Task1(void *data)
{
 U08 state;

 .
 .
 while(1)
 {
 .
 .
 state = OS_TimerGetState(&Timer1);
 if(state & OS_TMR_ENABLE)
 {
 .
 .
 }
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 91/100

OS_TimerGetRemain

U32 OS_TimerGetRemain(OS_TMR *ptmr)

Returns the remaining time (in timer-ticks) of a running timer.
Is the returned time equal to 0, the timer was expired or was never activated by OS_TimerCreate.

Parameters

*ptmr pointer to Timer

Return Value

time remaining time in timer-ticks

Example

OS_TMR Timer1;

void OS_FAR Task1(void *data)
{
 U32 rtime;

 .
 .
 while(1)
 {
 .
 .
 rtime = OS_TimerGetRemain(&Timer1);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 92/100

System-Ticks

OS_TimeSet

void OS_TimeSet(U32 ticks)

Places the kernel-internal Tick-Counter on handed over value.

Parameters

ticks new value of tick-counter

Return Value

none

Example

void OS_FAR Task1(void *data)
{
 .
 .
 while(1)
 {
 .
 OS_TimeSet(24837);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 93/100

OS_TimeGet

U32 OS_TimeGet(void)

It returns the current value of the kernel-internal Tick-Counter.

Parameters

none

Return Value

ticks actual value of tick-counter

Example

void OS_FAR Task1(void *data)
{
 U32 time;

 .
 .
 while(1)
 {
 .
 time = OS_TimeGet();
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 94/100

Interrupts

OS_IntEnter

void OS_IntEnter(void)

Register an Interrupt-Level. No contextswitch are generated by it. This function is necessary for C-Code ISRs.

Parameters

none

Return Value

none

Example

void OS_FAR ISR1(void)
{
 OS_IntEnter();
 .
 .
 .
 OS_IntExit();
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 95/100

OS_IntExit

void OS_IntExit(void)

Unregister an Interrupt-Level. Contextswitches are generated again by it. This function is necessary for C-Code ISRs.

Parameters

none

Return Value

none

Example

void OS_FAR ISR1(void)
{
 OS_IntEnter();
 .
 .
 .
 OS_IntExit();
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 96/100

History

OS_HistoryPost

U08 OS_HistoryPost(U32 param1, U32 param2)

Writes down an entry into the History-Table of the kernel. Additional to the two parameters still becomes the priority of
the Tasks and the Tick-Counter, as time stamps, written down.

Parameters

param1 first 32-bit parameter for table

param2 secound 32-bit parameter for table

Return Value

OS_NO_ERR Entry written

Example

OS_Q Queue5;

void OS_FAR Task2(void *data)
{
 U08 state;
 U08 Message;

 .
 .
 while(1)
 {
 .
 Message = 0x2D;
 state = OS_QueueFrontPost(&Queue5, Message, 200);
 if(state != OS_NO_ERR)
 OS_HistoryPost((U32)state, 0x0205);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 97/100

OS_HistoryRead

U08 OS_HistoryRead(U32 *param1, U32 *param2, U08 *prio, U32 *time)

Reads next entry from the History-Table of the kernel and deletes this on that occasion.

Parameters

*param1 pointer to variable will get the first 32-bit parameter

*param2 pointer to variable will get the secound 32-bit parameter

*prio pointer to variable will get priority of task who has this written

*time pointer to variable will get time-stamp of this entry

Return Value

OS_NO_ERR Entry read

OS_HIS_END no entry existing

Example

void OS_FAR Task3(void *data)
{
 U08 state;
 U32 Hpara1;
 U32 Hpara2;
 U08 Tprio;
 U32 stamp;

 .
 .
 while(1)
 {
 .
 state = OS_HistoryRead(&Hpara1, &Hpara2, &Tprio, &stamp);
 .
 }
}

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 98/100

Comments

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 99/100

Comments

19.12.23, 10:40 HTML2PDFManual - pC/OS Reference

about:blank 100/100

Comments

