<» embedded-os.de

a Ittle world of RTOS and data-communiCaton protocols

pC/SES Reference

V1.14b

HaftungsausschluB

Der Autor Ubernimmt keinerlei Haftung flr durch diesen Code entstandene oder
entstehende Schaden an Hard- und Software. Er versichert lediglich, daB er den Code
vielfaltigen Test's auf unterschiedlicher Hardware unterzogen hat, um seinerseits keine
Fehler bestehen zu wissen. Sollten dennoch Fehler auftauchen oder Vorschlage zur
Verbesserung des Codes an den Autor weitergegeben werden, so ist dieser bestrebt,
Fehler schnellstmdglich auszumerzen oder Vorschldge einzuarbeiten.

liability exclusion

The author takes over no liability for through this code originated or emerging damages
to hardware and software. He assures merely that he subjected the code of diverse
tests on different hardware, about for his part no mistakes to know exists. Mistakes
nevertheless should appear or suggestions are passed on at the author to the
improvement of the code, so this is striving, mistakes fastest to wipe out or to
incorporate suggestions.

The (small) Serial-File-System is based on simple concatenated blocks whose elements (DIR / FILE) are
referenced by a 32bit hash of their name and where the number of max. entries per directory must be defined.

By using a 32bit hash as a name, the file system can be massively simplified, but there are therefore no
references to the names of the entries. The hash of each entry must be unique within its directory. Since a 32bit
hash value can not be guaranteed to be unique in itself - that is, if two names have the same hash value - several
32bit hash algorithms are usable, but the selection must be set at compile time.

This file-system handles all names of directories/files as hash over a STRING, so special characters can be used in
the names.

reserved names-elements:

.. - one directory back

/ - on the beginning of the Path: for from ROOT

./ - on the beginning of the Path: for from current DIR (optional)
/ - in middle of the Path: as separation for directory/file-names

The whole file-system works case-sensitive !

Various serial NVM memory devices (SPI & I2C) are tested as hardware (MRAM, FRAM, ReRAM, EEPROM).
Additional the file system can run too on parallel memory like RAM, FRAM, MRAM or EEPROM. Ideal are all types
that support byte-wise writing by internal buffering of sectors/pages, but this can also be done by the low-level
hardware driver.

The use of serial flash memory was not provided due to the sector size of = 64kB, the necessary buffering of
such an update, as well as the long programming time of an entire page. When using EEPROM, it is important to
remember that 1.000.000 cycles are already quite a lot, but this also indicates a finite lifetime,

In addition, the SerialFileSystem do not respect hot spots (high-update files) or transactions.

User-Functions:

SFS_Init Initialization of the File-System
SFS_GetRev

It returns a pointer on SFS revision

SFS_Flush

save the SFS as image into a Windows/LINUX-file

SFS_Format

Format the drive

SFS_BecomeUser

As User announce

SFS_CloseUser

As User cancel

SFS_CreateDir

Create a directory

SFS_RemoveDir

Remove a directory

SFS_RemoveDirTree

Remove a directory and all his sub-elements

SFS_RenameDir

Rename a directory

SFS_ChangeDir

Change current path

SFS_ChangeDirTemp

Change current path temporary

SFS_BackDirTemp

returns from temporary path

SFS_CreateFile

Create a file

SFS_RemoveFile

Remove a file

SFS_RenameFile

Rename a file

SFS_AttribFile

Change the attributes of a file

SFS_GetFileAttrib

It returns the attributes of a file

SFS_GetFileSize

It returns the current size of a file

SFS_GetMaxFileSize

It returns the max size of a file

SFS_OpenFile Open a file in "mode"

SFS_CloseFile Close the opened file

SFS_SeekFile Place the pointer in opened file absolutely
SFS_TellFile It returns the pointer in opened file

SFS_SetEOF Set EndOfFile in opened file to actual R/W-pointer
SFS_ReadFile Read data from opened file

SFS_WriteFile Write data into opened file

SFS_GetErrNo

read the error-code from Open, Read, Write ...

SFS_CreatelLink

Create a Link to a directory or file

SFS_Removelink

Remove a Link

SFS_GetEntry

It returns all infos of the given entry (dir/file/link) into a
struct

Error-Codes:

SFS_NO_ERR 0 no errors

SFS_USR_OVF 200 no user free

SFS_DBL_USER 201 double user

SFS_NO_USER 202 not a valid user

SFS_NAME_EXIST 210 name of entry exist in this DIR
SFS_NOT_EXIST 211 DIR or FILE not exist

SFS_PATH_ERR 212 error on PATH

SFS_TMP_DIR 213 Temp-Dir is still used / not set
SFS_NO_FILE 214 error on PATH / no FILE-Name given
SFS_FILE_RO 215 file to open for writing is read-only
SFS_FILE_WO 216 file to open for reading is write-only
SFS_FILE_EOF 217 end-of-file while reading or writing
SFS_NOT_EMPTY 218 entry not empty

SFS_FILE_OPEN 219 current user have a opened file
SFS_NO_DATA 220 current file-lenght is zero
SFS_WRONG_PTR 221 offset into open file is wrong (or size for R/W)
SFS_NO_ENTRY 222 no free entry in directory
SFS_WRONG_A 223 wrong access flags or attributes given
SFS_LINKED 230 entry is linked

SFS_MAX_LINK 231 entry is max count linked
SFS_LINK_ERR 232 error in link-mechanism
SFS_NO_LINK 233 no link to an entry in link-entry
SFS_MEM_ERR 240 error in block-memory manager
SFS_MEM_OVF 241 memory overflow

SFS_FORMAT_ERR 250 error in found format or during formatting
SFS_PORT_ERR 251 error in HW-port

Configuration of the File-System

The pC/SFS File-System can be configured in addition to the to-use SPI, I2C or parallel memory type some
numbers of ways to configure services as well as to reduce the memory requirements - code-size for the compilers
"unused code" may not clearly identify - available. These are in the file "SFS_cfg.h" together.

SFS_MAX_USER max users (tasks)

SFS_HANDLES max files opened by a user (task)

auto-format during init if no valid ROOT-entry was found (alltimes

SFS_AUTO_FORMAT DEEP_FORMAT)

SFS_DEEP_FORMAT SFS_Format() clears the hole memory of the drive

SFS_AUTO_CLOSE close all open files of a user automatically on SFS_CloseUser()

SFS_TempDIR use the one-level temporary current-dir feature

SFS_LINKS create & delete of links supported

SFS_REMOVEDIRTREE | delete a dir and all sub-elements supported

SFS_BLOCK_SIZE bytes per managed block

SFS_ENTRIES_PER_DIR | entries per dir a 16 byte (one is lost for "..")

exact type of used SPI, I2C or parallel memory device (to config the

SFS_MEM_.... LLdriver)

If SFS_LINKS is not set, no links can be created or deleted, and the linked entries (DIR/FILE) can not be deleted.
However, links contained in the file system can be processed completely otherwise.

If the file system found during the initialization is smaller or differently configured but compatible (HW-compatible
prerequisite), its settings are accepted and work can be done with this file system.

General

SFS_Init

U08 SFS_ Init(void)

Initialize the File-System and installs on use of a RTOS the required mutex/semaphore. If you using the
Windows/Linux-HOST Port, a Windows/LINUX Image-file will be loaded first. If the system should be
recognized as unformatted or incompatible, so this is executed if the config-switch SFS AUTO FORMAT is set.
This function must be called before all other file services at the system initialization once.

Parameters

none

Return Value

SFS_NO_ERR file system initialised

SFS_MEM_ERR Mistakes in the memory management

SFS_FORMAT_ERR format unknown or incompatible

SFS_FILE_OPEN on SFS_AUTO FORMAT: a file is opened by a user
Example

void main (void)
{
U08 returnOk;

0S Init();

returnOk=SFS Init();

0S_Start();

SFS_GetRev

void SFS_GetRev (SFS PATHNAME OS HUGE **pointer)

It returns a pointer on the SFS-revision (NULL-terminated ASCII-array).

Parameters

**pointer pointer to pointer will get the address of array

Return Value

none

Example
void OS_FAR Taskl (void *data)

{
SFS_PATHNAME OS HUGE *Revision;

while (1)
{

SFS_GetRev (&Revision);

SFS_Flush

S$32 SFS Flush (void)

Only by using the Windows or Linux HOSTs
Saves the filesystem as IMAGE into a Windows/Linux-file.

Parameters

none

Return Value

SFS_NO_ERR Laufwerk gesichert
from Windows/LINUX see Windows/LINUX
Example

void main (void)
{
U08 returnOk;

returnOk=SFS Init();

returnOk=SFS Flush() ;

SFS_Format

U08 SFS Format (void)

Formats the SFS-Drive and writes down the ROOT-Entry. At this time no user may be known.

Parameters

none

Return Value

SFS_NO_ERR Drive formatted

SFS_USER at minimum one user is known

SFS_MEM_ERR Mistakes in the memory management

SFS_MEM_OVF File-system to small for ROOT-Entry
Example

void OS FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS Format();

SFS_BecomeUser

U08 SFS BecomeUser (SFS USER OS HUGE *SFSUser)

It creates a new User.

This function initializes the User-Control-Block and writes down the new user into the internal list. Every Task
need only once to register, after this every User can handle SFS_HANDLES files. After registration of an user
can call this drive and file accesses.

Parameters

*SFSUser pointer to user-control-block

Return Value

SFS_NO_ERR User successfully created

SFS_DBL_USER this User already is announced

SFS_USR_OVF already SFS_maxUSER are announced
Example

SFS_USER SFS Userl;
void OS FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS BecomeUser (&SFS Userl);

SFS_CloseUser

U08 SFS CloseUser (void)

It deletes a registered user from the internal list. This user must be announced again for it before accesses to
the drive become again.

Parameters

none

Return Value

SFS_NO_ERR User successfully deleted
SFS_FILE_OPEN User opened a file currently
SFS_NO_USER User unknown

Example

SFS USER SFS Userl;
void OS_FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS_BecomeUser (&SFS_Userl) ;

returnOk=SFS CloseUser() ;

Directory and File-Handlings

SFS__CreateDir

U08 SFS CreateDir (SFS_PATHNAME OS HUGE *Name)

Creates a new directory in the current or handed over path. The path statement can absolutely or relatively
take place on that occasion.

Parameters

*Name Directory-name [with path]

Return Value

SFS_NO_ERR Directory created
SFS_NO_USER User unknown
SFS_PATH_ERR an element of the path statement doesn't exist
SFS_NAME_EXIST a directory with same name exists already in this directory
SFS_MEM_ERR Mistakes in the memory management
SFS_NO_ENTRY directory full

Example

SFS_USER SFS Userl;
void OS FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS BecomeUser (&SFS Userl);

LeturnOk=SFS_CreateDir("/usr"); // from ROOT
éeturnOk=SFS_CreateDir("./demo/test"); // from current directory
éeturnOk=SFS_CreateDir("../local/test.src"); // from one level back
éeturnOk=SFS_CreateDir("config.save"); // in current directory

returnOk=SFS CloseUser() ;

SFS_RemoveDir

U08 SFS RemoveDir (SFS PATHNAME OS HUGE *Name)

Removes the directory in the current or handed over path. The path statement can absolutely or relatively
take place on that occasion. That to deleting directory must be included empty and no link may point this
entry.

Parameters

*Name Directory-name [with path]

Return Value

SFS_NO_ERR Directory deleted

SFS_NO_USER User unknown

SFS_PATH_ERR an element of the path statement doesn't exist

SFS_NOT_EMPTY the directory is not empty

SFS_LINKED the directory is linked from another entry

SFS_TMP_DIR the directory is the current directory of a user

SFS_MEM_ERR Mistakes in the memory management
Example

SFS_USER SFS Userl;
void OS_FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS BecomeUser (&SFS_Userl) ;

returnOk=SFS_RemoveDir ("config.save"); // in actual directory

SFS_RemoveDirTree

U08 SFS RemoveDirTree (SFS PATHNAME OS HUGE *Name)

Removes the directory in the current or handed over path and all sub-elements contained therein. The path
statement can absolutely or relatively take place on that occasion. That to deleting directory must not be
empty. All sub-entries will also be deleted. Only a link from outside that sub-tree into it can not be resolved
and will generate an error code. In this case, a directory emptied down to this linked element remains. No
link may point the to delete entry.

Parameters

*Name Directory-name [with path]

Return Value

SFS_NO_ERR Directory deleted
SFS_NO_USER User unknown
SFS_PATH_ERR an element of the path statement doesn't exist
SFS_LINKED an element in this directory-tree is linked from outside
SFS_TMP_DIR the directory is the current directory of a user
SFS_MEM_ERR Mistakes in the memory management

Example

SFS_USER SFS Userl;
void OS FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS BecomeUser (&SFS Userl);

returnOk=SFS RemoveDirTree ("config.v08"); // in actual directory

SFS_RenameDir

U08 SFS RenameDir (SFS PATHNAME OS HUGE *Name, SFS PATHNAME OS HUGE *NewName)

Changes the name of directory in the current or handed over path. The path statement can absolutely or
relatively take place on that occasion. A Path in the new name will be ignored, so the directory can't be

moved !
Parameters
*Name Directory-name [with path]
*NewName new Directory-name (a path will ignored)

Return Value

SFS_NO_ERR directory renamed
SFS_NO_USER user unknown
SFS_PATH_ERR an element of the path statement doesn't exist
SFS_NAME_EXIST a entry with same name exists already in this directory
SFS_NOT_EXIST the directory doesn't exist
SFS_MEM_ERR mistakes in the memory management

Example

SFS_USER SFS Userl;
void OS_FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS BecomeUser (&SFS_Userl) ;

returnOk=SFS RenameDir ("/usr", "user"); // in ROOT

SFS_ChangeDir

U08 SFS_ ChangeDir (SFS_PATHNAME OS HUGE *Name)

Changes the current directory. The path statement can absolutely or relatively take place on that occasion.

Parameters

*Name Directory-name [with path]

Return Value

SFS_NO_ERR directory changed
SFS_NO_USER user unknown
SFS_PATH_ERR an element of the path statement doesn't exist
SFS_NOT_EXIST the directory doesn't exist
Example

SFS_USER SFS Userl;
void OS_FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS BecomeUser (&SFS_Userl) ;

returnOk=SFS_ChangeDir("../test.src");

SFS_ChangeDirTemp

U08 SFS_ChangeDirTemp (SFS_PATHNAME OS HUGE *Name)
Changes the current directory temporary. The path statement can absolutely or relatively take place on that
occasion. The current directory up to this call will registrated internal. This feature can only be used one level

per user.

Parameters

*Name Directory-name [with path]

Return Value

SFS_NO_ERR dDirectory changed
SFS_NO_USER user unknown
SFS_TMP_DIR Temp-Dir is still used
SFS_PATH_ERR an element of the path statement doesn't exist
SFS_NOT_EXIST the directory doesn't exist
Example

SFS_USER SFS Userl;
void OS FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS BecomeUser (&SFS_ Userl) ;

returnOk=SFS ChangeDirTemp ("../userfiles");
if (returnOk == SFS NO ERR) {

do {

} while(returnOk == SFS NO_ERR) ;

returnOk=SFS BackDirTemp () ;

SFS_BackDirTemp

U08 SFS BackDirTemp (void)

Returns from the temporary directory to the registrated directory from SFS_ChangeDirTemp().

Parameters

none

Return Value

SFS_NO_ERR directory changed

SFS_NO_USER user unknown

SFS_TMP_DIR Temp-Dir is not set
Example

SFS USER SFS Userl;
void OS_FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS_ BecomeUser (&SFS_Userl) ;

returnOk=SFS_ChangeDirTemp("../userfiles");

if (returnOk == SFS _NO_ERR) ({
do {
} while(returnOk == SFS NO_ERR) ;

returnOk=SFS BackDirTemp () ;

Directory and File-Handlings

SFS_CreatefFile
U08 SFS CreateFile (SFS_PATHNAME OS HUGE *Name, SFS ATTR Attr, SFS LONG size)
Creates a new file in the current or handed over path in stated size. The path statement can absolutely or

relatively take place on that occasion. As attributes, ReadOnly or WriteOnly can be declared. ATTENTION!
Files don't possess any type in this system.

Parameters
*Name File-name [with path]
Attr Attributes of this file
size max size of file in bytes

Return Value

SFS_NO_ERR File created
SFS_NO_USER User unknown
SFS_PATH_ERR an element of the path statement doesn't exist
SFS_NAME_EXIST a file with same name exists already in this directory
SFS_WRONG_A wrong file attributes
SFS_MEM_ERR Mistakes in the memory management
SFS_MEM_OVF Drive full

Example

SFS_USER SFS Userl;
void OS FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS BecomeUser (&SFS Userl);

LeturnOk=SFS_CreateFile("/filel", SFS_ATTR RO, 100);

// from ROOT
éeturnOk=SFS_CreateFile("../test.src/main.c", SFS_ATTR _RW, 350);

// from one level back
%eturnOk=SFS_CreateFile("makefile.mak", SFS _ATTR WO, 140);

// in actual directory

SFS_RemoveFile

U08 SFS RemoveFile (SFS PATHNAME OS HUGE *Name)
Deletes the file in the current or handed over path. The path statement can absolutely or relatively take place
on that occasion. The to deleting file cannot be opened by any other user on that occasion and no link may

point this entry.

Parameters

*Name File-name [with path]

Return Value

SFS_NO_ERR File deleted

SFS_NO_USER User unknown

SFS_FILE_OPEN User, itself or other, this file opened currently

SFS_PATH_ERR an element of the path statement doesn't exist

SFS_LINKED the file is linked from another entry

SFS_MEM_ERR Mistakes in the memory management
Example

SFS_USER SFS Userl;
void OS_FAR Taskl (void *data)

{
U08 returnOk;

&hile(l)
{

returnOk=SFS BecomeUser (&SFS_Userl) ;

returnOk=SFS RemoveFile ("makefile.mak"); // in actual directory

SFS_RenameFile
U08 SFS RenameFile (SFS PATHNAME OS HUGE *OldName, SFS PATHNAME OS HUGE *NewName)
Changes the name of file in the current or handed over path. The path statement can absolutely or relatively

take place on that occasion. The to changing file cannot be opened by any other user on that occasion.
A Path in the new name will be cut, so the file can't be moved !

Parameters
*OldName File-name [with path]
*NewName new File-name (a path will ignored)

Return Value

SFS_NO_ERR File name changed

SFS_NO_USER User unknown

SFS_NO_FILE no file name in the path or as new name given

SFS_FILE_OPEN User, itself or other, this file opened currently

SFS_NAME_EXIST a file with same name exists already in this directory

SFS_NOT_EXIST File doesn't exist in this directory

SFS_PATH_ERR an element of the path statement doesn't exist
Example

SFS_USER SFS Userl;
void OS_FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS_ BecomeUser (&SFS_Userl) ;

returnOk=SFS RenameFile ("/test.src/main.c", "modul.c");

SFS_AttribFile

U08 SFS_AttribFile (SFS_PATHNAME OS HUGE *Name, SFS_ATTR Attribs)

Changes the attributes of the file in the current or handed over path. The path statement can absolutely or
relatively take place on that occasion. The to changing file cannot be opened by any other user on that

occasion.

Parameters
*Name File-name [with path]
Attribs ew File-attributs

Return Value

SFS_NO_ERR File attributes changed
SFS_NO_USER User unknown
SFS_NO_FILE no file name in the path given
SFS_FILE_OPEN User, itself or other, this file opened currently
SFS_NOT_EXIST File doesn't exist in this directory
SFS_PATH_ERR an element of the path statement doesn't exist
SFS_WRONG_A wrong file attributes

Example

SFS USER SFS Userl;
void OS_FAR Taskl (void *data)

{
U08 returnOk;

while (1)
{

returnOk=SFS_ BecomeUser (&SFS_Userl) ;

returnOk=SFS_AttribFile("../SFS_err.log", SFS_ATTR RO);

SFS_GetFileAttrib

SFS_ATTR SFS_GetFileAttrib (SFS_PATHNAME OS HUGE *Name)

It returns the attributes of the file in the current or handed over path. The path statement can absolutely or
relatively take place on that occasion.

Parameters

*Name File-name [with path]

Return Value

If the returned attribs -1, so you get the error-codes with a following SFS_GetErrNo ().

SFS_NO_ERR File attributes readed

SFS_NO_USER User unknown

SFS_NO_FILE no file name in the path given

SFS_NOT_EXIST File doesn't exist in this directory

SFS_PATH_ERR an element of the path statement doesn't exist
Example

SFS_USER SFS Userl;

void OS_FAR Taskl (void *data)

{
Uu08 returnOk;
SFS ATTR attribs;

while (1)

{
returnOk=SFS BecomeUser (&SFS Userl);
attribs=SFS GetFileAttrib("../SFS err.log");

if (attribs==(SFS_ATTR) (-1))
returnOk=SFS GetErrNo () ;

SFS_GetFileSize

SFS_LONG SFS GetFileSize (SFS_PATHNAME OS HUGE *Name)

It returns the current size of the file in the current or handed over path. The path statement can absolutely or
relatively take place on that occasion.

Parameters

*Name File-name [with path]

Return Value

If the returned filesize zero, so you get the error-codes with a following SFS_GetErrNo ().

SFS_NO_ERR filesize returned

SFS_NO_USER User unknown

SFS_NO_FILE no file name in the path given

SFS_NOT_EXIST File doesn't exist in this directory

SFS_PATH_ERR an element of the path statement doesn't exist

SFS_MEM_ERR Mistakes in the memory management
Example

SFS_USER SFS Userl;

void OS_FAR Taskl (void *data)

{
Uu08 returnOk;
SFS LONG filesize;

while (1)

{
returnOk=SFS BecomeUser (&SFS Userl);
filesize=SFS GetFileSize ("/Dir2/config.sys");

if(!filesize)
returnOk=SFS GetErrNo();

SFS_GetMaxFileSize

SFS_LONG SFS GetMaxFileSize (SFS PATHNAME OS HUGE *Name)

It returns the max size of the file in the current or handed over path. The path statement can absolutely or
relatively take place on that occasion. This is the size of the file, the file was created.

Parameters

*Name File-name [with path]

Return Value

If the returned filesize zero, so you get the error-codes with a following SFS_GetErrNo ().

SFS_NO_ERR filesize returned

SFS_NO_USER User unknown

SFS_NO_FILE no file name in the path given

SFS_NOT_EXIST File doesn't exist in this directory

SFS_PATH_ERR an element of the path statement doesn't exist

SFS_MEM_ERR Mistakes in the memory management
Example

SFS_USER SFS Userl;

void OS_FAR Taskl (void *data)

{
Uuo08 returnOk;
SFS LONG filesize;

while (1)

{
returnOk=SFS BecomeUser (&SFS Userl);
filesize=SFS GetMaxFileSize ("/Dir2/config.sys");

if(!filesize)
returnOk=SFS GetErrNo();

File-Access

SFS_OpenfFile

SFS_HANDLE SFS OpenFile (SFS_PATHNAME OS HUGE *Name, UO08 Mode)

Open a file in the current or handed over path. The path statement can absolutely or relatively take place on
that occasion. The to opening file cannot be opened by any other user on that occasion. For all folloing
accesses a handle will returned, under this this file-data can access. This handle is intern referenced with the

User and is checked on every access.
If a NULL-handle returned, so get the Error-Code with SFS_GetErrNo ().

Access conditions:

If a file opened (more than once) to reading, an other User can't open this file to writing - if a file from one

User opened to writing, no other User can open this file for reading or writing.

Parameters
*Name File-name [with path]
mode mode of access (ReadOnly/WriteOnly/ReadWrite)

Return Value

If a NULL-handle returned, so get the Error-Codes with a following SFS_GetErrNo ().

SFS_NO_ERR File opened
SFS_NO_USER User unknown
SFS_NO_FILE no file name in the path given

another User opened this file currently

SFS_FILE_OPEN (see Access conditions)

SFS_FILE_RO File is ReadOnly and cannot be opened "write"
SFS_FILE_WO File is WriteOnly and cannot be opened "read"
SFS_NOT_EXIST File doesn't exist in this directory
SFS_PATH_ERR an element of the path statement doesn't exist
SFS_WRONG_A wrong access attributes

Example

SFS_USER SFS Userl;

void OS_FAR Taskl (void *data)

{
Uuo08 returnOk;
SFS_HANDLE handl;

while (1)
{
returnOk=SFS BecomeUser (&SFS_Userl) ;
handl=SFS OpenFile ("/Dir2/config.sys", SFS ACC RO);

if ('handl)
returnOk=SFS GetErrNo();

SFS_CloseFile

U08 SFS CloseFile (SFS_HANDLE Handl)

Close the currently opened file.

Parameters

Handl File-Handle

Return Value

SFS_NO_ERR File closed

SFS_NO_USER User unknown

SFS_NO_FILE Handle invalid
Example

SFS USER SFS Userl;
void OS_FAR Taskl (void *data)
{

Uuo8 returnOk;
SFS HANDLE handl;

while (1)
{
returnOk=SFS_BecomeUser (&SFS_Userl) ;
handl=SFS OpenFile("/Dir2/config.sys", SFS ACC RO);

if (handl) {

returnOk=SFS CloseFile (handl);

SFS_SeekFile

U08 SFS_SeekFile (SFS _LONG offset, SFS HANDLE Handl)

Places the R/W-pointer within the opened file absolutely.

Parameters

absolut pointer-position (in bytes),
offset 0 for start of file,
SFS_SEEK EOF for end of file

Handl File-Handle

Return Value

SFS_NO_ERR Pointer in file placed
SFS_NO_HAND handle invalid
SFS_NO_USER User unknown
SFS_NO_FILE no file is opened / Handle invalid
SFS_NO_DATA File has zero-lenght
SFS_WRONG_PTR offset greater file-size

Example

SFS USER SFS Userl;
void OS FAR Taskl (void *data)
{

Uuo8s returnOk;
SFS HANDLE handl;

while (1)
{
returnOk=SFS BecomeUser (&SFS Userl) ;
handl=SFS OpenFile("/Dir2/config.sys", SFS ACC_RO);

if (handl) {

returnOk=SFS SeekFile (100, handl);

SFS_TellFile

SFS LONG SFS TellFile (SFS HANDLE Handl)

It returns the R/W-pointer of opened file.

Parameters

Handl File-Handle

Return Value

If the returned position is zero, so get the following Error-Codes with SFS_GetErrNo ().

SFS_NO_ERR pointer returned (start of file)
SFS_NO_HAND handle invalid
SFS_NO_USER User unknown
SFS_NO_FILE no file is opened / Handle invalid
SFS_NO_DATA File has zero-lenght

Example

SFS _USER SFS Userl;

void OS_FAR Taskl (void *data)
{

Uuo08 returnOk;
SFS HANDLE handl;
SFS LONG posit;
while (1)

{
returnOk=SFS BecomeUser (&SFS Userl);
handl=SFS OpenFile("/Dir2/config.sys", SFS ACC RO);
if (handl) {
posit=SFS TellFile (handl);

if (!posit)
returnOk=SFS GetErrNo () ;

SFS_SetEOF

U08 SFS_SetEOF (SFS_HANDLE Handl)

Set EndOfFile in opened file to actual R/W-pointer.

Parameters

Handl File-Handle

Return Value

SFS_NO_ERR EndOfFile set

SFS_NO_HAND handle invalid

SFS_NO_USER User unknown

SFS_NO_FILE no file is open

SFS_NO_DATA File has zero-lenght

SFS_FILE_RO File or Open-mode is Read-Only
Example

SFS USER SFS Userl;

void OS_FAR Taskl (void *data)
{

uo8 returnOk;

SFS HANDLE handl;

Uuo8 writebuffer[]={"SFS Test File R/W"};
SFS_ LONG written;

while (1)

{
returnOk=SFS BecomeUser (&SFS Userl);

handl=SFS OpenFile("/Dir2/config.sys", SFS ACC_RW);

if (handl) {
written=SFS WriteFile (writebuffer, strlen(writebuffer)-1, handl);
if (written == strlen (writebuffer)-1)

returnOk=SFS SetEOF (handl);

SFS_ReadFile

SFS_LONG SFS_ReadFile (U08 OS_HUGE *dest, SFS LONG size, SFS_HANDLE Handl)

Reads number of bytes from currently opened file from current position. After successful reading, the R/W-
pointer stands behind the readed block.

The readed number of bytes will returned. If this not the same from the call, so call SFS_GetErrNo () to get
the error-code.

Parameters
*dest Pointer to buffer where the bytes must written in
size Bytes to read
Handl File-Handle

Return Value

If the returned number of readed bytes not the same from the call, so you get the following error-codes from
SFS_GetErrNo ().

SFS_NO_ERR Bytes from file readed

SFS_NO_HAND handle invalid

SFS_NO_USER User unknown

SFS_NO_FILE no file is open

SFS_NO_DATA File has zero-lenght

SFS_FILE_EOF End-Of-File

SFS_FILE_WO File or Open-mode is Write-Only

SFS_WRONG_PTR offset and/or size greater file-size
Example

SFS_USER SFS Userl;

void OS FAR Taskl (void *data)
{

Uu08 returnOk;
SFSiHANDLE handl;

Uu08 readbuffer[100];
SFS_LONG readed;

returnOk=SFS BecomeUser (&SFS Userl);

handl=SFS OpenFile ("/Dir2/config.sys", SFS ACC RO);
if (handl) {
returnOk=SFS SeekFile (50, handl);

readed=SFS_ReadFile (&readbuffer[0], 80, handl);
if (readed != 80)
returnOk=SFS GetErrNo () ;

SFS__WriteFile

SFS_LONG SFS WriteFile (U08 OS_ HUGE *src, SFS LONG size, SFS HANDLE Handl)

Writes number of byte in currently opened file beginning on current position. After successful writing, the
R/W-pointer stands behind the written block.

The written number of bytes will returned. If this not the same from the call, so call SFS_GetErrNo () to get
the error-code.

Parameters
*src Pointer to source-buffer
size Bytes to write
Handl File-Handle

Return Value

If the returned number of written bytes not the same from the call, so you get the following error-codes from
SFS_GetErrNo ().

SFS_NO_ERR Bytes in file written

SFS_NO_HAND Handle invalid

SFS_NO_USER User unknown

SFS_NO_FILE no file is open / handle invalid

SFS_NO_DATA File has zero-lenght

SFS_FILE_RO File or Open-mode is Read-Only

SFS_WRONG_PTR actual offset plus size greater file-size
Example

SFS_USER SFS Userl;

void OS FAR Taskl (void *data)
{

Uu08 returnOk;

SFSiHANDLE handl;

uos writebuffer[]={"SFS Test File R/W"};
SE'S LONG written;

returnOk=SFS BecomeUser (&SFS Userl);

handl=SFS OpenFile ("/Dir2/config.sys", SFS_ACC_WO);
if (handl) {
written=SFS WriteFile (writebuffer, strlen(writebuffer)-1, handl);
if(written != strlen(writebuffer)-1)
returnOk=SFS GetErrNo () ;

SFS_GetErrNo

U08 SFS GetErrNo (void)

returns the error-code from Open, Read, Write ...

Parameters

none

Return Value

error-code

error-code from last called and failed function-call without error-
code return in API

Example

SFS_USER SFS Userl;

void OS FAR Taskl (void *data)

{
Uu08 returnOk;
SFS_HANDLE handl;

while (1)
{

returnOk=SFS BecomeUser (&SFS Userl);

handl=SFS OpenFile("/Dir2/config.sys", SFS ACC RO);

if (!handl)

returnOk=SFS GetErrNo () ;

Link-Handling

SFS_CreatelLink

U08 SFS CreateLink(SFS PATHNAME OS HUGE *OrgName, SFS PATHNAME OS HUGE *Name)

Creates a new link to a file or directory. The original entry can located in an other tree-part. As attribs of this
link are the attribs of the linked entry valid.

Parameters
*OrgName File/Directory-name to link [with path]
*Name Link-name [with path]

Return Value

SFS_NO_ERR Link created
SFS_NO_USER User unknown
SFS_PATH_ERR an element of the path statement doesn't exist
SFS_NAME_EXIST a entry with same name exists already in this directory
SFS_NO_ENTRY directory full
SFS_MEM_ERR Mistakes in the memory management
SFS_MAX_LINK *0OrgName is SFS_MAX_Links linked
Example

SFS_USER SFS Userl;
void OS FAR Taskl (void *data)

{
U08 returnOk;

returnOk=SFS BecomeUser (&SFS Userl);

returnOk=SFS CreatelLink("/Dir2/config.sys", "../test.dir/linked.conf");

SFS_Removelink

U08 SFS RemoveLink (SFS PATHNAME OS HUGE *LinkName)
Deletes the link in the current or handed over path. The path statement can absolutely or relatively take
place on that occasion. The link to be deleted cannot be linked by another entry.

--- TO DELETING DIR / FILE: ---
Linked Dir / Files can't be removed while one link to this entry is valid !

Parameters

*Name Link-name [with path]

Return Value

SFS_NO_ERR Link removed
SFS_NO_USER User unknown
SFS_PATH_ERR an element of the path statement doesn't exist
SFS_MEM_ERR Mistakes in the memory management
SFS_LINKED *Name is oneself linked
the entry isn't a link / the entry is a link but points to no entry or
SFS_NO_LINK this linked entry doesn't know this
Example

SFS_USER SFS Userl;
void OS FAR Taskl (void *data)

{
U08 returnOk;

returnOk=SFS BecomeUser (&SFS Userl);

returnOk=SFS CreatelLink("/Dir2/config.sys", "/test.dir/linked.conf");

returnOk=SFS RemovelLink ("../test.dir/linked.conf");

Entries

SFS_GetEntry

U08 SFS_ GetEntry(SFS PATHNAME OS HUGE *Name, SFS GET OS HUGE *get)

Returns in the struct all relevant information of the given entry.

Parameters
*Name Entry-name (dir/file/link) [with path]
*get pointer to GET struct

Return Value

SFS_NO_ERR entry read

SFS_NOT_EXIST this entry doesn't exist

SFS_NO_USER User unknown
Example

SFS_USER SFS Userl;
void OS FAR Taskl (void *data)

{
Uu08 returnOk;

SFS_GET get;

while (1)
{

returnOk=SFS BecomeUser (&SFS Userl);
returnOk=SFS GetEntry("/Dir2/element", &get);

if (get.Attr & SFS_ATTR DIR) ({

Comments

Comments

Comments

